The aim of the thesis is to verify synergy of genetic programming and neural networks. Solution is provided by set of experiments with implemented library built upon benchmark tasks. I've done experiments with directly and also indirectly encoded neural netwrok. I focused on finding robust solutions and the best calculation of configurations, overfitting detection and advanced stimulations of solution with fitness function. Generally better solutions were found using lower values of parameters n_c and n_r. These solutions tended less to be overfitted. I was able to evolve neurocontroller eliminating oscilations in pole balancing problem. In cancer detection problem, precision of provided solution was over 98%, which overcame compared techniques. I succeeded also in designing of maze model, where agent was able to perform multistep tasks.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:236080 |
Date | January 2014 |
Creators | Kolář, Adam |
Contributors | Král, Jiří, Zbořil, František |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0022 seconds