The main hypothesis tested in this thesis was that poor animal production from saltbush pastures is due to the negative effects of high sodium chloride (NaCl) and potassium chloride (KCl) on the ruminal environment, and subsequent effects on microbial populations and products of rumen fermentation. This main hypothesis was tested in two experiments. In the first experiment (Chapter Four) the effects of saltbush and a formulated high-salt diet on the ruminal environment and microbial populations were measured over 24-hours following feeding. Feeding both the saltbush and high-salt diet increased the salinity of the rumen fluid, but the formulated high-salt diet caused a decrease in ruminal pH while the saltbush caused an increase. This resulted in differences in the composition of the ruminal microbial populations between the sheep fed different diets. In the second experiment (Chapter Five) the effects of saltbush and a formulated highsalt diet on rumen fermentation were measured. Sheep fed saltbush had inefficient rumen fermentation and this was only partially explained by the high salt content of the diet. Diets containing high levels of NaCl and KCl provided low levels of net energy to sheep, but sheep fed saltbush lost more energy as methane and faecal energy compared to sheep fed the formulated high-salt diet. Inefficient rumen fermentation could help to explain poor animal production from saltbush pastures. Energy supplements such as barley grain can improve the value of saltbush pastures as feed for sheep, but there is no information on how much supplement is required. A third experiment (Chapter Six) was designed to test the hypothesis that there would be an optimal amount of barley required to improve the efficiency of rumen fermentation in sheep fed saltbush. Barley and straw were combined in a pellet and substituted for saltbush at 0, 20, 40, 60, 80 and 100% of the maintenance ration. Feeding barley and straw improved the efficiency of rumen fermentation in sheep fed saltbush, with an optimal level of supplementation at 60% of the maintenance diet. This is likely to be lower (approximately 20% of maintenance) if barley is fed without straw.
Identifer | oai:union.ndltd.org:ADTP/233968 |
Date | January 2009 |
Creators | Mayberry, Dianne |
Publisher | University of Western Australia. School of Animal Biology |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Dianne Mayberry, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.0018 seconds