Return to search

Barley and Durum Response to Phosphorus at Buckey, Maricopa, and Yuma, 1997

Soil tests were developed in the 1930's as a guideline for phosphorus fertilizer application. The phosphorus soil test for the calcareous soils in the Western U.S. is based on bicarbonate extraction and is often called the Olsen P method. Phosphorus fertilizer recommendations for small grains based on this test are remarkably similar across the Western states. Despite the availability of this test, its proven accuracy (93% in California), and its low cost ($1 /acre), most farmers in Arizona apply phosphorus fertilizer to their small grains crops without the benefit of a preplant soil test. The purpose of this study was to demonstrate the effectiveness of the soil test in predicting a response to phosphorus fertilizer. At Maricopa, the soil test P was 8.1 ppm, a variable response to P fertilizer was expected, and a variable response to P fertilizer was obtained. We were able to detect a response to P fertilizer at this site with only 1 out of 4 varieties, and the response averaged across varieties was 336 lbs /acre or a 6% increase. No response to P fertilizer was obtained on a commercial farm in Buckeye where the soil test P was 22 ppm and a response was not expected. At the Yuma-Mesa site, the preplant P level was also 22 ppm, and a yield increase of29% (1442 lbs /acre) was measured on barley even though a response was not expected. The soil on the Yuma -Mesa is 95% sand and perhaps the soil test for P needs to be adjusted for this soil type, but at the other sites tested, the current soil test recommendations for P seem to be accurate.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/202474
Date10 1900
CreatorsOttman, M. J., Husman, S. H., Tickes, B. R.
ContributorsOttman, Michael
PublisherCollege of Agriculture, University of Arizona (Tucson, AZ)
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Article
Relation370110, Series P-110

Page generated in 0.0019 seconds