Rapid assessment of littoral ocean physical and chemical conditions has represented a great challenge in recent years. For the physical part, time constraint may limit to using the barotropic mode. But because rain can be significant in St Andrew Bay system, Florida, fresh water, even when rivers lack, is a prevailing salinity regulator through ground seepage. Therefore, studying the baroclinicity and forcing mechanisms should provide a reasonable guidance help for deciding which will be ignored or included when modeling the area of interest. For the chemical part, considering either national security relevance or shipping hazard, a release of chemicals used in nearby offshore oil platform stands in the domain of possibilities. A coupled hydrodynamic and chemical model, WQMAP and CHEMMAP developed at the Applied Sciences Associates, is used in this study with WQMAP for evaluating baroclinicity and forcing mechanism impacts and with CHEMAP for estimating the consequences of a hypothetical release of chemical. A stochastic model was applied for determining probable distribution and concentration resulting from the release at a given location.
Identifer | oai:union.ndltd.org:nps.edu/oai:calhoun.nps.edu:10945/1869 |
Date | 06 1900 |
Creators | Pauly, Patrice |
Contributors | Chu, Peter, Haeger, Steven D., Naval Postgraduate School (U.S.)., Oceanography |
Publisher | Monterey, California. Naval Postgraduate School |
Source Sets | Naval Postgraduate School |
Detected Language | English |
Type | Thesis |
Format | xvi, 97 p. : ill. (some col.), application/pdf |
Rights | Approved for public release, distribution unlimited |
Page generated in 0.0057 seconds