Return to search

Estuarine Dynamics as a Function of Barrier Island Transgression and Wetland Loss: Understanding the Transport and Exchange Processes

The Northern Gulf of Mexico and coastal Louisiana are experiencing accelerated relative sea level rise rates; therefore, the region is ideal for modeling the global affects of sea level rise (SLR) on estuarine dynamics in a transgressive barrier island setting. The field methods and numerical modeling in this study show that as barrier islands are converted to inner shoals, tidal exchange increases between the estuary and coastal ocean. If marshes are unable to accrete at a pace comparable to SLR, wetlands will deteriorate and the tidal exchange and tidal prism will further increase. Secondary to hurricanes, winter storms are a primary driver in coastal morphology in this region, and this study shows that wind direction and magnitude, as well as atmospheric pressure change greatly affect estuarine exchange. Significant wetland loss and winter storm events produce changes in local and regional circulation patterns, thereby affecting the hydrodynamic exchange and resulting transport.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-2243
Date17 December 2010
CreatorsSchindler, Jennifer
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.0021 seconds