Reconfigurable transistors merge unipolar p- and n-type characteristics of field-effect transistors into a single programmable device. Combinational circuits have shown benefits in area and power consumption by fine-grain reconfiguration of complete logic blocks at runtime. To complement this volatile programming technology, a proof of concept for individually addressable reconfigurable nonvolatile transistors is presented. A charge-trapping stack is incorporated, and four distinct and stable states in a single device are demonstrated.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:80460 |
Date | 17 August 2022 |
Creators | Park, So Jeong, Jeon, Dae-Young, Piontek, Sabrina, Grube, Matthias, Ocker, Johannes, Sessi, Violetta, Heinzig, André, Trommer, Jens, Kim, Gyu-Tae, Mikolajick, Thomas, Weber, Walter M. |
Publisher | Wiley-VCH |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 2199-160X, https://doi.org/10.1002/aelm.201700399 |
Page generated in 0.0021 seconds