Return to search

Synchrotron imaging of bovine and human ovaries ex vivo

Background and Rationale:
Reproductive dysfunction affects more than 15% of Canadian women; however, the underlying causes remain largely unknown. Ultrasonography is the most commonly used research and diagnostic tool for imaging the ovaries and uterus. However, current ultrasonographic techniques allow the detection of ovarian structures (eg. follicles, corpora lutea) at diameters of only ≥2 mm. The increased effectiveness of synchrotron technology for imaging ovaries in comparison to conventional imaging methods is currently unknown.

Overall Objective:
The overall objective of this research was to determine the effectiveness of synchrotron techniques for imaging ovaries. We hypothesized that synchrotron techniques would provide greater contrast for visualizing structural details of follicles, corpora lutea (CL), and cumulus oocyte complexes (COC), compared to conventional ultrasonography.

Materials and Methods:
Three studies were conducted to evaluate phase-contrast based synchrotron imaging methods. The first study involved Diffraction Enhanced Imaging (DEI) of bovine ovaries (n=6). The second study involved Propagation-Based Computed Tomography (PB-CT) imaging of bovine (n=4) and human ovaries (n=4). A third, preliminary study was conducted to explore the use of Talbot Grating Interferometry (TGI-CT) imaging of bovine (n=1) and human ovaries (n=1). Fresh and formalin-fixed bovine and human ovaries were imaged without or with contrast injection into the ovarian artery. Following synchrotron imaging, all ovarian samples were evaluated using diagnostic ultrasonography and histology. Images obtained using synchrotron techniques, ultrasonography and histology were qualitative and quantitatively compared.

Results:
DEI allowed the identification of 71% of follicles ≥2 mm and 67% of CL detected using ultrasonography. Mean follicle diameter was similar between DEI (9.6 ± 2.4 mm), ultrasonography (9.0 ± 2.6 mm), and histology (6.9 ± 1.9 mm) for fresh ovaries without contrast (P = 0.70). Likewise, no difference in CL diameter was detected between DEI (11.64 ± 1.67 mm), ultrasonography (9.34 ± 0.35 mm), and histology (9.6 ± 0.4 mm), (P = 0.34). Antral Follicle Count (AFC; ≥2mm) was similar between ultrasonography (6.5 ± 0.7 mm, fresh with no contrast; 6.5 ± 2.5 mm, preserved with no contrast) and DEI ( 4.5 ± 0.5 mm, fresh with no contrast; 6.5 ± 0.50 mm, preserved with no contrast) (P > 0.05). However, the contrast resolution for differentiating follicles and CL was inferior with DEI compared to ultrasonography. Small antral follicles <2mm, cell layers comprising the follicle wall and COC were not detected using either DEI or ultrasonography.
PB-CT imaging enabled the visualization of 100% of follicles ≥2 mm and 100% of CL that were detected with ultrasonography. CL containing a central cystic cavity were identified using PB-CT; however, CL without a central cystic cavity were not well-visualized. Mean follicle and luteal diameters did not differ among PB-CT, ultrasonography and histology (P>0.05). PB-CT was superior to ultrasonography for detecting small antral follicles <2 mm in bovine ovaries (P = 0.04), and the granulosa and theca cell layers of the follicle wall in bovine and human ovaries (P < 0.0001). However, TGI-CT images exhibited greater contrast resolution for visualizing small and large antral follicles, CL, and the cell layers of the follicle wall compared to both PB-CT and ultrasonography. High contrast structures resembling COC were detected with both PB-CT and TGI-CT, but not with ultrasonography. Only TGI-CT permitted the visualization of the oocyte within the COC in fresh and preserved ovaries.

Conclusions:
DEI was inferior to ultrasonography for detecting ovarian follicles and CL. PB-CT was superior to ultrasonography for visualizing follicles <2 mm, COC, and the cell layers of the follicle wall. However, PB-CT was as effective as ultrasonography for detecting and measuring follicles ≥2 mm and cystic CL. Preliminary findings suggest that TGI-CT provides the greatest contrast for imaging both ovarian macro- and microanatomy compared to PB-CT, DEI, and ultrasonography.

Identiferoai:union.ndltd.org:USASK/oai:ecommons.usask.ca:10388/ETD-2013-07-1127
Date2013 July 1900
ContributorsBaerwald, Angela
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext, thesis

Page generated in 0.0023 seconds