Return to search

Evaluation of a least-squares radial basis function approximation method for solving the Black-Scholes equation for option pricing

Radial basis function (RBF) approximation, is a new extremely powerful tool that is promising for high-dimensional problems, such as those arising from pricing of basket options using the Black-Scholes partial differential equation. The main problem for RBF methods have been ill-conditioning as the RBF shape parameter becomes small, corresponding to flat RBFs. This thesis employs a recently developed method called the RBF-QR method to reduce computational cost by improving the conditioning, thereby allowing for the use of a wider range of shape parameter values. Numerical experiments for the one-dimensional case are presented  and a MATLAB implementation is provided. In our thesis, the RBF-QR method performs better  than the RBF-Direct method for small shape parameters. Using Chebyshev points, instead of a standard uniform distribution, can increase the accuracy through clustering of the nodes towards the boundary. The least squares formulation for RBF methods is preferable to the collocation approach because it can result in smaller errors  for the same number of basis functions.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-183042
Date January 2012
CreatorsWang, Cong
PublisherUppsala universitet, Institutionen för informationsteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationIT ; 12 051

Page generated in 0.0064 seconds