Return to search

Computational Quantum Study of Intermediates Formed During the Partial Oxidation of Melatonin

Melatonin is a neurohormone produced by the pineal gland in the brain. It functions as an antioxidant to scavenge free radicals. Free radicals are reactive species; they often oxidize the cells leading to oxidative stress which may lead to severe health complications. Reaction of melatonin with free radicals is known to be stepwise, as such the stability of the intermediates can be examined. Thus, the possibility of using melatonin as an in vivo spin trap can be determined. Spin traps allow characterization of unstable radical species using electron spin resonance spectroscopy. In this research, ab initio quantum chemistry techniques were used to calculate the energies of selected intermediates formed during the partial oxidation of melatonin by hydroxyl radical. Specifically, optimized geometries for melatonin, and selected intermediates with ·OH were obtained at the DFT/B3LYP/cc-pVXZ and HF/cc-pVXZ (X = D, T, Q) levels of theory. Extrapolations to the complete basis set limit were also performed.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5235
Date01 May 2020
CreatorsOladiran, Oladun
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright 2020 by Oladun Solomon Oladiran

Page generated in 0.0373 seconds