Return to search

Dynamique RMN non linéaire et renversement temporel dans les mélanges d'3He-4He hyperpolarisés à basse température

Ce travail de thèse porte sur l'étude et le contrôle des effets sur la dynamique de précession en résonance magnétique nucléaire (RMN) dûs aux couplages non linéaires entre l'échantillon et la bobine d'une part (amortissement cohérent) et à l'interaction dipolaire longue distance au sein d'un échantillon liquide hyperpolarisé d'autre part. En RMN conventionnelle, l'influence des effets collectifs peut être négligée et l'évolution de l'aimantation locale est décrite par l'équation de Bloch habituelle. Cette approche, justifiée pour un échantillon faiblement aimanté, se révèle inappropriée dans un liquide fortement aimanté. Les interactions dipolaires magnétiques d'un tel système apportent une contribution non linéaire et non locale à l'équation de Bloch et induisent en particulier l'apparition d'instabilités de précession à grand angle de basculement. Les expériences de RMN sont réalisées sur le spin de l'3He à faible champ magnétique (2mT). L'échantillon étudié est un mélange liquide d'3He hyperpolarisé (polarisé nucléairement à température ambiante par pompage optique en phase gazeuse) et d'4He superfluide à 1.1K. Pour une faible concentration d'3He, le temps de relaxation intrinsèque est de plusieurs heures. Dans ce mélange, le champ dipolaire peut atteindre quelques µT (ce qui est bien supérieur aux quelques nT obtenus en RMN du proton à 12T). Dans de telles conditions, au-delà de la précession dans le champ principal, l'évolution RMN est dominée par l'effet de l'interaction dipolaire magnétique. Les conditions expérimentales (température, concentration et polarisation nucléaire) offrent une grande liberté dans le contrôle des paramètres expérimentaux (coefficient de diffusion, champ dipolaire), ce qui fait de ce système un outil de choix pour l'étude de la dynamique de la précession RMN non linéaire. Un code de simulation numérique de la dynamique RMN non linéaire a été utilisé en complément des expériences pour apporter un éclairage plus large sur notre compréhension des phénomènes en jeu. Les principaux points abordés dans ce travail sont - L'étude et le contrôle des effets du couplage échantillon/antenne (amortissement cohérent, cavity pulling) à l'aide d'un dispositif de rétroaction. - L'étude de l'écho dipolaire produit par une séquence appelée sandwich magique adaptée du domaine de la RMN du solide et utilisée pour la première fois sur un échantillon liquide durant cette thèse. Cette séquence à la propriété d'inverser l'interaction dipolaire effective pendant qu'elle est appliquée et donc de forcer une évolution à rebours. - Le contrôle et la suppression de l'instabilité dipolaire grâce à l'utilisation de sandwiches magiques; Le temps de vie du signal peut ainsi être augmenté de 3 ordres de grandeur. - La conception de séquences composites réalisant le même type de Hamiltonien effectif que le sandwich magique , et notamment des impulsions composites "magiques" susceptibles d'améliorer l'efficacité du sandwich magique. Les outils développés au cours de ce travail devraient permettre un meilleur contrôle de la dynamique RMN dans les systèmes liquides où les effets dipolaires jouent un rôle notable.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00623612
Date22 September 2010
CreatorsBaudin, Emmanuel
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0089 seconds