The present study consists of the development of a MATLAB version of computer program (FORTRAN) developed by Papanicolaou (1992) to solve the governing small strain consolidation equation of second order non-linear transit partial differential equation of parabolic type. This program is modified to integrate the settling and consolidation processes together in order to provide continuous results from start to end of the process in a single run of MATLAB program. The study also proposes a method to calculate the batch curve by considering the variation of solids concentration in the suspension region. Instead of the graphical approach available in the literature, the program uses numerical approach (Newton-Raphson method) to calculate the solids concentration in suspension region at the interface of suspension and sedimentation regions. This method uses the empirical relationship between solids flux and solids concentration. The study also proposes a method to calculate the solids concentration, throughout the settling column, using the concept of characteristic. The present work also simulates the large strain consolidation model (Gutierrez, 2003). The results of present work closely match with the results of small strain model (Diplas & Papanicolaou, 1997) available in literature. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/35480 |
Date | 04 January 2005 |
Creators | Tiwari, Brajesh Kumar |
Contributors | Civil Engineering, Borggaard, Jeffrey T., Gutierrez, Marte S., Diplas, Panayiotis |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | thesis_draft.pdf |
Page generated in 0.002 seconds