Return to search

Modélisation stochastique pour le raisonnement médical et ses applications à la télémédecine / Stochastic models for medical reasonning and their application to telemedicine

La télémédecine est une approche nouvelle de la pratique médicale qui est particulièrement porteuse d'espoir face à l'enjeu sociétal posé par l'incidence croissante des maladies chroniques. Le développement de la télésurveillance médicale réalisée grâce au recueil de données physiologiques ou biologiques au domicile du patient implique de développer nos capacités à analyser un volume important de données. Le problème auquel s'intéresse cette thèse est d'établir ou d'apprendre automatiquement la fonction qui lie les données fournies par les capteurs à l'état de santé du patient. La difficulté principale tient à ce qu'il est difficile d'établir de manière sûre l'état de santé d'un patient, la seule référence disponible étant alors celle que peut donner le médecin traitant. Nous montrons dans cette thèse que la modélisation stochastique et plus particulièrement le formalisme graphique bayésien permet d'aborder cette question sous trois angles complémentaires. Le premier est celui de la représentation explicite de l'expertise médicale. Cette approche est adaptée aux situations dans lesquelles les données ne sont pas accessibles et où il est donc nécessaire de modéliser directement la démarche du médecin. La seconde approche envisagée est celle de l'apprentissage automatique des paramètres du modèles lorsque suffisamment de données sur les sorties attendues sont disponibles. Nous nous intéressons enfin à la possibilité d'apprendre les actions pertinentes par renforcement sous les contraintes de la problématique médicale à savoir d'après l'observation de l'expert dans sa pratique normale / Telemedicine is a new approach of medical practice that is expected to be one of the answers for facing the challenge of chronic diseases management. Development of remote medical surveillance at home relies on our capacity to interpret a growing amount of collected data. In this thesis, we are interested in defining the function that connects the state of the patient to the data given by the different sensors. The main difficulty comes from the uncertainty when assessing the state of the patient. The only reference available is the one that can be given by the medical doctor. We show in this thesis that stochastic modelling and more specifically graphical bayesian formalism allows to treat this question in three ways. The first one consists in representing explicitly the medical expertise. This approach is adapted to the cases in which data is not accessible, and as a consequence, where it is necessary to model directly the diagnosis rules. The second approach that we study is the automatic learning of model parameters that can be performed when enough information is available concerning the expected outputs of the system. Finally, we propose the use of reinforcement for learning medical actions from the observation of the human expert in its everyday practice. Considering the specificity of the medical domain, we study the likelihood criterion for learning an efficient representation of the state space

Identiferoai:union.ndltd.org:theses.fr/2011NAN10148
Date27 May 2011
CreatorsRose, Cédric
ContributorsNancy 1, Charpillet, François
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds