Return to search

Uma abordagem bayesiana para mapeamento de QTLs em populações experimentais / A Bayesian approach for mapping QTL in experimental populations

Muitos caracteres em plantas e animais são de natureza quantitativa, influenciados por múltiplos genes. Com o advento de novas técnicas moleculares tem sido possível mapear os locos que controlam os caracteres quantitativos, denominados QTLs (Quantitative Trait Loci). Mapear um QTL significa identificar sua posição no genoma, bem como, estimar seus efeitos genéticos. A maior dificuldade para realizar o mapeamento de QTLs, se deve ao fato de que o número de QTLs é desconhecido. Métodos bayesianos juntamente com método Monte Carlo com Cadeias de Markov (MCMC), têm sido implementados para inferir conjuntamente o número de QTLs, suas posições no genoma e os efeitos genéticos . O desafio está em obter a amostra da distribuição conjunta a posteriori desses parâmetros, uma vez que o número de QTLs pode ser considerado desconhecido e a dimensão do espaço paramétrico muda de acordo com o número de QTLs presente no modelo. No presente trabalho foi implementado, utilizando-se o programa estatístico R uma abordagem bayesiana para mapear QTLs em que múltiplos QTLs e os efeitos de epistasia são considerados no modelo. Para tanto foram ajustados modelos com números crescentes de QTLs e o fator de Bayes foi utilizado para selecionar o modelo mais adequado e conseqüentemente, estimar o número de QTLs que controlam os fenótipos de interesse. Para investigar a eficiência da metodologia implementada foi feito um estudo de simulação em que foram considerados duas diferentes populações experimentais: retrocruzamento e F2, sendo que para ambas as populações foi feito o estudo de simulação considerando modelos com e sem epistasia. A abordagem implementada mostrou-se muito eficiente, sendo que para todas as situações consideradas o modelo selecionado foi o modelo contendo o número verdadeiro de QTLs considerado na simulação dos dados. Além disso, foi feito o mapeamento de QTLs de três fenótipos de milho tropical: altura da planta (AP), altura da espiga (AE) e produção de grãos utilizando a metodologia implementada e os resultados obtidos foram comparados com os resultados encontrados pelo método CIM. / Many traits in plants and animals have quantitative nature, influenced by multiple genes. With the new molecular techniques, it has been possible to map the loci, which control the quantitative traits, called QTL (Quantitative Trait Loci). Mapping a QTL means to identify its position in the genome, as well as to estimate its genetics effects. The great difficulty of mapping QTL relates to the fact that the number of QTL is unknown. Bayesian approaches used with Markov Chain Monte Carlo method (MCMC) have been applied to infer QTL number, their positions in the genome and their genetic effects. The challenge is to obtain the sample from the joined distribution posterior of these parameters, since the number of QTL may be considered unknown and hence the dimension of the parametric space changes according to the number of QTL in the model. In this study, a Bayesian approach was applied, using the statistical program R, in order to map QTL, considering multiples QTL and epistasis effects in the model. Models were adjusted with the crescent number of QTL and Bayes factor was used to select the most suitable model and, consequently, to estimate the number of QTL that control interesting phenotype. To evaluate the efficiency of the applied methodology, a simulation study was done, considering two different experimental populations: backcross and F2, accomplishing the simulation study for both populations, considering models with and without epistasis. The applied approach resulted to be very efficient, considering that for all the used situations, the selected model was the one containing the real number of QTL used in the data simulation. Moreover, the QTL mapping of three phenotypes of tropical corn was done: plant height, corn-cob height and grain production, using the applied methodology and the results were compared to the results found by the CIM method.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-13042009-160316
Date03 April 2009
CreatorsAndréia da Silva Meyer
ContributorsRoseli Aparecida Leandro, Julio Silvio de Sousa Bueno Filho, Clarice Garcia Borges Demetrio, Antonio Augusto Franco Garcia, Julia Maria Pavan Soler
PublisherUniversidade de São Paulo, Agronomia (Estatística e Experimentação Agronômica), USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds