Return to search

Bayesian Analysis of Switching ARCH Models

We consider a time series model with autoregressive conditional heteroskedasticity that is subject to changes in regime. The regimes evolve according to a multistate latent Markov switching process with unknown transition probabilities, and it is the constant in the variance process of the innovations that is subject to regime shifts. The joint estimation of the latent process and all model parameters is performed within a Bayesian framework using the method of Markov Chain Monte Carlo simulation. We perform model selection with respect to the number of states and the number of autoregressive parameters in the variance process using Bayes factors and model likelihoods. To this aim, the model likelihood is estimated by combining the candidate's formula with importance sampling. The usefulness of the sampler is demonstrated by applying it to the dataset previously used by Hamilton and Susmel who investigated models with switching autoregressive conditional heteroskedasticity using maximum likelihood methods. The paper concludes with some issues related to maximum likelihood methods, to classical model select ion, and to potential straightforward extensions of the model presented here. (author's abstract) / Series: Forschungsberichte / Institut für Statistik

Identiferoai:union.ndltd.org:VIENNA/oai:epub.wu-wien.ac.at:epub-wu-01_a42
Date January 2000
CreatorsKaufmann, Sylvia, Frühwirth-Schnatter, Sylvia
PublisherDepartment of Statistics and Mathematics, WU Vienna University of Economics and Business
Source SetsWirtschaftsuniversität Wien
LanguageEnglish
Detected LanguageEnglish
TypePaper, NonPeerReviewed
Formatapplication/pdf
Relationhttp://epub.wu.ac.at/744/

Page generated in 0.0015 seconds