This thesis addresses spatial interpolation and temporal prediction using air pollution data by several space-time modelling approaches. Firstly, we implement the dynamic linear modelling (DLM) approach in spatial interpolation and find various potential
problems with that approach. We develop software to implement our approach. Secondly, we implement a Bayesian spatial prediction (BSP) approach to model spatio-temporal ground-level ozone fields and compare the accuracy of that approach with that of the DLM. Thirdly, we develop a Bayesian version empirical orthogonal function (EOF) method to incorporate the uncertainties due to temporally varying spatial process, and the spatial variations at broad- and fine-
scale. Finally, we extend the BSP into the DLM framework to develop a unified Bayesian spatio-temporal model for univariate and
multivariate responses. The result generalizes a number of current approaches in this field.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU./634 |
Date | 05 1900 |
Creators | Dou, Yiping |
Publisher | University of British Columbia |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | 3834182 bytes, application/pdf |
Page generated in 0.0086 seconds