Sequential experimentation is often employed in process optimization wherein a series of small experiments are run successively in order to determine which experimental factor levels are likely to yield a desirable response. Although there currently exists a framework for identifying optimal follow-up designs after an initial experiment has been run, the accepted methods frequently point to multiple designs leaving the practitioner to choose one arbitrarily. In this thesis, we apply preposterior analysis and Bayesian model-averaging to develop a methodology for further discriminating between optimal follow-up designs while controlling for both parameter and model uncertainty.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-3709 |
Date | 02 May 2012 |
Creators | Kelly, Kevin Donald |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.002 seconds