Return to search

Application of Saliency Maps for Optimizing Camera Positioning in Deep Learning Applications

In the fields of process control engineering and robotics, especially in automatic control, optimization challenges frequently manifest as complex problems with expensive evaluations. This thesis zeroes in on one such problem: the optimization of camera positions for Convolutional Neural Networks (CNNs). CNNs have specific attention points in images that are often not intuitive to human perception, making camera placement critical for performance.

The research is guided by two primary questions. The first investigates the role of Explainable Artificial Intelligence (XAI), specifically GradCAM++ visual explanations, in Computer Vision for aiding in the evaluation of different camera positions. Building on this, the second question assesses a novel algorithm that leverages these XAI features against traditional black-box optimization methods.

To answer these questions, the study employs a robotic auto-positioning system for data collection, CNN model training, and performance evaluation. A case study focused on classifying flow regimes in industrial-grade bioreactors validates the method. The proposed approach shows improvements over established techniques like Grid Search, Random Search, Bayesian optimization, and Simulated Annealing. Future work will focus on gathering more data and including noise for generalized conclusions.:Contents

1 Introduction
1.1 Motivation
1.2 Problem Analysis
1.3 Research Question
1.4 Structure of the Thesis

2 State of the Art
2.1 Literature Research Methodology
2.1.1 Search Strategy
2.1.2 Inclusion and Exclusion Criteria
2.2 Blackbox Optimization
2.3 Mathematical Notation
2.4 Bayesian Optimization
2.5 Simulated Annealing
2.6 Random Search
2.7 Gridsearch
2.8 Explainable A.I. and Saliency Maps
2.9 Flowregime Classification in Stirred Vessels
2.10 Performance Metrics
2.10.1 R2 Score and Polynomial Regression for Experiment Data Analysis
2.10.2 Blackbox Optimization Performance Metrics
2.10.3 CNN Performance Metrics

3 Methodology
3.1 Requirement Analysis and Research Hypothesis
3.2 Research Approach: Case Study
3.3 Data Collection
3.4 Evaluation and Justification

4 Concept
4.1 System Overview
4.2 Data Flow
4.3 Experimental Setup
4.4 Optimization Challenges and Approaches

5 Data Collection and Experimental Setup
5.1 Hardware Components

5.2 Data Recording and Design of Experiments
5.3 Data Collection
5.4 Post-Experiment

6 Implementation
6.1 Simulation Unit
6.2 Recommendation Scalar from Saliency Maps
6.3 Saliency Map Features as Guidance Mechanism
6.4 GradCam++ Enhanced Bayesian Optimization
6.5 Benchmarking Unit
6.6 Benchmarking

7 Results and Evaluation
7.1 Experiment Data Analysis
7.2 Recommendation Scalar
7.3 Benchmarking Results and Quantitative Analysis
7.3.1 Accuracy Results from the Benchmarking Process
7.3.2 Cumulative Results Interpretation
7.3.3 Analysis of Variability
7.4 Answering the Research Questions
7.5 Summary

8 Discussion
8.1 Critical Examination of Limitations
8.2 Discussion of Solutions to Limitations
8.3 Practice-Oriented Discussion of Findings

9 Summary and Outlook / Im Bereich der Prozessleittechnik und Robotik, speziell bei der automatischen Steuerung, treten oft komplexe Optimierungsprobleme auf. Diese Arbeit konzentriert sich auf die Optimierung der Kameraplatzierung in Anwendungen, die Convolutional Neural Networks (CNNs) verwenden. Da CNNs spezifische, für den Menschen nicht immer ersichtliche, Merkmale in Bildern hervorheben, ist die intuitive Platzierung der Kamera oft nicht optimal.

Zwei Forschungsfragen leiten diese Arbeit: Die erste Frage untersucht die Rolle von Erklärbarer Künstlicher Intelligenz (XAI) in der Computer Vision zur Bereitstellung von Merkmalen für die Bewertung von Kamerapositionen. Die zweite Frage vergleicht einen darauf basierenden Algorithmus mit anderen Blackbox-Optimierungstechniken. Ein robotisches Auto-Positionierungssystem wird zur Datenerfassung und für Experimente eingesetzt.

Als Lösungsansatz wird eine Methode vorgestellt, die XAI-Merkmale, insbesondere solche aus GradCAM++ Erkenntnissen, mit einem Bayesschen Optimierungsalgorithmus kombiniert. Diese Methode wird in einer Fallstudie zur Klassifizierung von Strömungsregimen in industriellen Bioreaktoren angewendet und zeigt eine gesteigerte performance im Vergleich zu etablierten Methoden. Zukünftige Forschung wird sich auf die Sammlung weiterer Daten, die Inklusion von verrauschten Daten und die Konsultation von Experten für eine kostengünstigere Implementierung konzentrieren.:Contents

1 Introduction
1.1 Motivation
1.2 Problem Analysis
1.3 Research Question
1.4 Structure of the Thesis

2 State of the Art
2.1 Literature Research Methodology
2.1.1 Search Strategy
2.1.2 Inclusion and Exclusion Criteria
2.2 Blackbox Optimization
2.3 Mathematical Notation
2.4 Bayesian Optimization
2.5 Simulated Annealing
2.6 Random Search
2.7 Gridsearch
2.8 Explainable A.I. and Saliency Maps
2.9 Flowregime Classification in Stirred Vessels
2.10 Performance Metrics
2.10.1 R2 Score and Polynomial Regression for Experiment Data Analysis
2.10.2 Blackbox Optimization Performance Metrics
2.10.3 CNN Performance Metrics

3 Methodology
3.1 Requirement Analysis and Research Hypothesis
3.2 Research Approach: Case Study
3.3 Data Collection
3.4 Evaluation and Justification

4 Concept
4.1 System Overview
4.2 Data Flow
4.3 Experimental Setup
4.4 Optimization Challenges and Approaches

5 Data Collection and Experimental Setup
5.1 Hardware Components

5.2 Data Recording and Design of Experiments
5.3 Data Collection
5.4 Post-Experiment

6 Implementation
6.1 Simulation Unit
6.2 Recommendation Scalar from Saliency Maps
6.3 Saliency Map Features as Guidance Mechanism
6.4 GradCam++ Enhanced Bayesian Optimization
6.5 Benchmarking Unit
6.6 Benchmarking

7 Results and Evaluation
7.1 Experiment Data Analysis
7.2 Recommendation Scalar
7.3 Benchmarking Results and Quantitative Analysis
7.3.1 Accuracy Results from the Benchmarking Process
7.3.2 Cumulative Results Interpretation
7.3.3 Analysis of Variability
7.4 Answering the Research Questions
7.5 Summary

8 Discussion
8.1 Critical Examination of Limitations
8.2 Discussion of Solutions to Limitations
8.3 Practice-Oriented Discussion of Findings

9 Summary and Outlook

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:88861
Date05 January 2024
CreatorsWecke, Leonard-Riccardo Hans
ContributorsKhaydarov, Valentin, Urbas, Leon, Mädler, Jonathan, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:masterThesis, info:eu-repo/semantics/masterThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds