The master's thesis deals with target tracking. For this a decentralized sensor network using distributed particle filter with likelihood consensus is used. This consensus is based on a sparse representation of local likelihood function in a suitable chosen dictionary. In this thesis two dictionaries are compared: the widely used Fourier dictionary and our proposed B-splines. At the same time, thanks to the sparsity of distributed data, it is possible to implement compressed sensing method. The results are compared in terms of tracking error and communication costs. The thesis also contains scripts and functions in MATLAB.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:400432 |
Date | January 2019 |
Creators | Klimeš, Ondřej |
Contributors | Veselý, Vítězslav, Rajmic, Pavel |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds