Return to search

Komprimované vzorkování pro efektivní sledování objektu senzorovou sítí / Compressive sampling for effective target tracking in a sensor network

The master's thesis deals with target tracking. For this a decentralized sensor network using distributed particle filter with likelihood consensus is used. This consensus is based on a sparse representation of local likelihood function in a suitable chosen dictionary. In this thesis two dictionaries are compared: the widely used Fourier dictionary and our proposed B-splines. At the same time, thanks to the sparsity of distributed data, it is possible to implement compressed sensing method. The results are compared in terms of tracking error and communication costs. The thesis also contains scripts and functions in MATLAB.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:400432
Date January 2019
CreatorsKlimeš, Ondřej
ContributorsVeselý, Vítězslav, Rajmic, Pavel
PublisherVysoké učení technické v Brně. Fakulta strojního inženýrství
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.002 seconds