Endocrine resistance is a significant clinical problem in the treatment of estrogen (E2) receptor positive breast cancers. There are two ER subtypes, ERα and ERβ, which promote and inhibit breast cancer cell proliferation respectively. While ER positive breast cancers typically express a high ratio of ERα to ERβ, the acquisition of antiestrogen resistance in vitro and in vivo is associated with increased relative expression of the ERβ. On some gene enhancers ERβ has been shown to function in opposition to the ERα in the presence of E2.
Here we demonstrate that exposure to two different ERβ agonists results in decreased cell viability, and produced a marked reduction in G2/M phase in antiestrogen resistant breast cancer cell line in conjunction with altered cyclin D1, and cyclin E expression relative to E2. ERβ agonists also strongly downregulated Bcl-2 expression and recruited both ERs to the Bcl-2 and pS2 E2-response elements resulting in a reduction in mRNA transcripts from both of these genes. Bcl-2 reduction correlated with increased lipidation of LC3-I to LC3-II, indicative of increased autophagic flux. Although ERβ agonist treatment alone did not induce apoptosis, remarkably, the coaddition of ERβ agonist and the autophagy inhibitor, chloroquine, resulted in robust cell death. Lastly, in vivo studies demonstrate that preferential-ERβ agonists are not estrogenic in the uterus or mammary gland.
Together, these observations suggest that combined therapies including an ERβ agonist and an autophagy inhibitor may provide the basis for a safe, novel approach to the treatment of antiestrogen-resistant breast cancers.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/23669 |
Date | January 2013 |
Creators | Ruddy, Samantha |
Contributors | Pratt, Christine |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.002 seconds