Return to search

Tribological behaviour of CVD diamondcoated tools during machining of highstrength aluminum alloy : Master thesis project on tribological behavior of super hard materials: chemicalvapor deposition diamond (CVD) coated cutting tools and polycrystalline diamond(PCD) cutting tools used in machining of high strength aluminium alloy

Machining of Aluminum can be complicated due to large amounts of adhesion and diffusion of the aluminum onto the cutting tool, causing effects such as built-up layers and built-up edges. This leads to poor surface finishes and can significantly affect the tool life. CVD diamond coated tools have shown to be a potential solution to this problem and is tested and analyzed as such in this thesis. CVD diamond coated inserts are tested and compared to uncoated cemented carbide inserts and Polycrystalline diamond tipped inserts, in milling, turning and in refined tribological methods. The workpiece material in both the machine tests and the tribological tests is a high strength aluminum of the name Alumec 89. The machine tests were performed for 5 and 60 seconds at three cutting speeds, 600, 900 and 1200 m/min, keeping other parameters constant. The cutting inserts, the chips and the generated workpiece surface are examined using LOM, SEM and EDS. In the refined tribological testing, a pin-turning tribometer is used, with pins of uncoated and coated (CVD diamond) cemented carbide pins. These are tested at 5 and 30 seconds at 600 and 1200 m/min, applying a constant force of 10 N. In addition, a friction test was performed to measure the friction of the uncoated and the CVD diamond coated cemented carbide. Like the cutting inserts, the used pins were examined in LOM and SEM. The results show that while a large amount of built-up layer and built-up edges gather when using uncoated cemented carbide tools, only minimal amounts can be detected on CVD diamond and PCD. It has also been shown that the reason for the reduced adhesion in the case of diamond tooling materials is most likely due to the lack of chemical interactions between the diamond and the aluminum. The friction of the CVD diamond material was shown to be lower compared to the cemented carbide. The surface finish generated by the different materials, was the best in the case of PCD while the CVD generated multiple small scratches that severely reduced the surface roughness. This thesis provides some initial basic understanding of the interaction of CVD diamond coated inserts with high strength aluminum alloys.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-91223
Date January 2022
CreatorsLundquist, Oskar
PublisherKarlstads universitet, Institutionen för ingenjörsvetenskap och fysik (from 2013)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0014 seconds