Thermogenic brown adipose tissue generates heat via mitochondrial uncoupling protein-1 (UCP-1), increases whole-body energy expenditure and may protects against obesity and metabolic disorders. White adipocytes store excess energy in the form of triglycerides. UCP-1 positive adipocytes develop within white adipose tissue (beige or brite adipocytes) in response to cold exposure or β3 adrenergic agonists. It was known that beige adipocytes arise from a distinct lineage compared with brown adipocytes, but the developmental origin of the beige adipocytes is still unclear. Signaling pathways that control beige adipocyte determination and formation are essentially unknown. Here, we identified a novel signaling pathway that regulates the lineage specification of beige adipocytes. Bone morphogenetic protein 7 (BMP7), a known brown adipogenesis inducer, suppresses Rho-GTPase kinase (ROCK) and depolymerizes F-actin (filamentous actin) into G-actin (globular actin) in mesenchymal stem cells. G-actin regulates myocardin-related transcription factor A (MRTFA) that co-transactivates serum response factor (SRF) and promotes smooth muscle cell differentiation in various organs. Subcutaneous white adipose tissue from MRTFA-/- mice had enhanced accumulation of UCP-1+ adipocytes and elevated levels of brown-selective proteins. Compared with wild type (WT) controls, MRTFA-/- mice exhibited improved metabolic profiles and were protected from diet-induced obesity and insulin resistance, suggesting that the beige adipocytes are physiologically functional. Compared to WT mice, stromal vascular cells from MRTFA-/- mice expressed higher levels of distinct beige progenitor markers and reduced levels of smooth muscle markers. Our studies demonstrate a novel ROCK-actin-MRTFA/SRF pathway that contributes to the development of beige adipocytes.
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/16110 |
Date | 08 April 2016 |
Creators | Li, Chendi |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0018 seconds