Den här studien använder sig av TORCS (The Open Racing Car Simulator) som är ett intressant spel att skapa självkörande bilar i då det finns nitton olika typer av sensorer som beskriver omgivningen för agenten. Problemet för denna studie har varit att identifiera vilka av alla dessa sensorer som kan användas i en belöningsfunktion och hur denna sedan skall implementeras. Studien har anammat en kvantitativa experimentell studie där forskningsfrågan är: Hur kan en belöningsfunktion utformas så att agenten klarar av att manövrera i spelet TORCS utan att krocka och med ett konsekvent resultat Den kvantitativ experimentell studien valdes då författarna behövde designa, implementera, utföra experiment och utvärdera resultatet för respektive belöningsfunktion. Det har utförts totalt femton experiment över tolv olika belöningsfunktioner i spelet TORCS på två olika banor E-Track 5(E-5) och Aalborg. De tolv belöningsfunktionerna utförde varsitt experiment på E-5 där de tre som fick bäst resultat: Charlie, Foxtrot och Juliette utförde ett experiment på Aalborg, då denna är en svårare bana. Detta för att kunna styrka om den kan köra på mer än en bana och om belöningsfunktionen då är generell. Juliette är den belöningsfunktion som var ensam med att klara både E-5 och Aalborg utan att krocka. Genom de utförda experimenten drogs slutsatsen att Juliette uppfyller forskningsfrågan då den klarar bägge banorna utan att krocka och när den lyckas får den ett konsekvent resultat. Studien har därför lyckats designa och implementera en belöningsfunktion som uppfyller forskningsfrågan. / For this study TORCS (The Open Racing Car Simulator) have been used, since it is an interesting game to create self-driving cars in. This is due to the fact there is nineteen different sensors available that describes the environment for the agent. The problem for this study has been to identify what sensor can be used in a reward function and how should this reward function be implemented. The study have been utilizing a quantitative experimental method where the research questions have been: How can a reward function be designed so that an Agent can maneuver in TORCS without crashing and at the same time have a consistent result The quantitative experimental method was picked since the writer’s hade to design, implement, conduct experiment and evaluate the result for each reward function. Fifteen experiments have been conducted over twelve reward functions on two different maps: E-Track 5 (E-5) and Aalborg. Each of the twelve reward function conducted an experiment on E-5, where the three once with the best result: Charlie, Foxtrot and Juliette conducted an additional experiment on Aalborg. The test on Aalborg was conducted in order to prove if the reward function can maneuver on more than one map. Juliette was the only reward function that managed to complete a lap on both E-5 and Aalborg without crashing. Based on the conducted experiment the conclusion that Juliette fulfills the research question was made, due to it being capable of completing both maps without crashing and if it succeeded it gets a consistent result. Therefor this study has succeeded in answering the research question.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hb-15038 |
Date | January 2018 |
Creators | Andersson, Björn, Eriksson, Felix |
Publisher | Högskolan i Borås, Akademin för bibliotek, information, pedagogik och IT, Högskolan i Borås, Akademin för bibliotek, information, pedagogik och IT |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds