Return to search

Maximal LELM Distinguishability of Qubit and Qutrit Bell States using Projective and Non-Projective Measurements

Many quantum information tasks require measurements to distinguish between different quantum-mechanically entangled states (Bell states) of a particle pair. In practice, measurements are often limited to linear evolution and local measurement (LELM) of the particles. We investigate LELM distinguishability of the Bell states of two qubits (two-state particles) and qutrits (three-state particles), via standard projective measurement and via generalized measurement, which allows detection channels beyond the number of orthogonal single-particle states. Projective LELM can only distinguish 3 of 4 qubit Bell states; we show that generalized measurement does no better. We show that projective LELM can distinguish only 3 of 9 qutrit Bell states that generalized LELM allows at most 5 of 9. We have also made progress on distinguishing qubit $\times$ qutrit hyperentangled Bell states, which are made up of tensor products of the qubit Bell states and the qutrit Bell states, showing that the maximum number distinguishable with projective LELM measurements is between 9 and 11.

Identiferoai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1097
Date01 January 2017
CreatorsLeslie, Nathaniel
PublisherScholarship @ Claremont
Source SetsClaremont Colleges
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHMC Senior Theses
Rights© 2017 Nathaniel A Leslie, default

Page generated in 0.0062 seconds