Dans cette thèse nous étudions une classe d’équations de Hamilton-Jacobi-Bellman provenant de la théorie du contrôle optimal des équations différentielles ordinaires. Nous nous intéressons principalement à l’analyse de la sensibilité de la fonction valeur des problèmes de contrôle optimal associés à de telles équations de H-J-B. Dans la littérature, les relations de sensibilité fournissent une “mesure” de la robustesse des stratégies optimales par rapport aux variations de la variable d’état. Ces résultats sont des outils très importants pour le contrôle appliqué, parce qu’ils permettent d’étudier les effets que des approximations des données du système peuvent avoir sur les politiques optimales. Cette thèse est dédiée également à l’étude des problèmes de Mayer et de temps minimal. Nous supposons que la dynamique du problème soit une inclusion différentielle, afin de permettre aux données d’être non régulières et d’embrasser un ensemble plus grand d’applications. Néanmoins, cette tâche rend notre analyse plus difficile. La première contribution de cette étude est une extension de quelques résultats classiques de la théorie de la sensibilité au domaine des problèmes non paramétrées. Ces relations prennent la forme d’inclusions d’état adjoint, figurant dans le principe du maximum de Pontryagin, dans certains gradients généralisés de la fonction valeur évalués le long des trajectoires optimales. En deuxième lieu, nous développons des nouvelles relations de sensibilité impliquant des approximations du deuxième ordre de la fonction valeur. Cette analyse mène à de nouvelles applications concernant la propagation, tant ponctuel que local, de la régularité de la fonction valeur le long des trajectoires optimales. Nous proposons également des applications aux conditions d’optimalité. / This dissertation investigates a class of Hamilton-Jacobi-Bellman equations arising in optimal control of O.D.E.. We mainly focus on the sensitivity analysis of the optimal value function associated with the underlying control problems. In the literature, sensitivity relations provide a measure of the robustness of optimal control strategies with respect to variations of the state variable. This is a central tool in applied control, since it allows to study the effects that approximations of the inputs of the system may produce on the optimal policies. In this thesis, we deal whit problems in the Mayer or in the minimum time form. We assume that the dynamic is described by a differential inclusion, in order to allow data to be nonsmooth and to embrace a large area of concrete applications. Nevertheless, this task makes our analysis more challenging. Our main contribution is twofold. We first extend some classical results on sensitivity analysis to the field of nonparameterized problems. These relations take the form of inclusions of the co-state, featuring in the Pontryagin maximum principle, into suitable gradients of the value function evaluated along optimal trajectories. Furthermore, we develop new second-order sensitivity relations involving suitable second order approximations of the optimal value function. Besides being of intrinsic interest, this analysis leads to new consequences regarding the propagation of both pointwise and local regularity of the optimal value functions along optimal trajectories. As applications, we also provide refined necessary optimality conditions for some class of differential inclusions.
Identifer | oai:union.ndltd.org:theses.fr/2015PA066573 |
Date | 30 November 2015 |
Creators | Scarinci, Teresa |
Contributors | Paris 6, Università degli studi di Roma "Tor Vergata", Cannarsa, Piermarco, Frankowska, Hélène |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds