This Thesis deals with the determination of shear moduli of Brno Neogene clay ("tegel") in various directions and the determination of its stiffness anisotropy. The basic measure of stiffness anisotropy in this thesis is considered to be the degree of anisotropy αG given by the ratio of shear moduli in the horizontal (Ghh) and vertical direction (Gvh). Measurements of shear wave velocity were performed on undisturbed vertically and horizontally oriented samples of the Brno tegel in triaxial cell using piezoceramic sensors, so-called bender elements. As an advanced method for determining the degree of anisotropy of the material, another pair of bender elements was used in the measurements, mounted horizontally on the side walls of the sample in the triaxial cell. Based on these measurements, the values of shear moduli Ghh and Gvh for different stress levels were determined. The ratio of shear moduli then determined the degree of anisotropy αG ≈ 1,43 for the given stresses, as the most reliable value based on performed experiments. Literature review part of the thesis briefly summarizes the existing findings from research of physical and mechanical properties of the Brno tegel.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:434787 |
Date | January 2020 |
Creators | Krupička, Martin |
Contributors | Najser, Jan, Malát, Richard |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds