This study developed a nonlinear constitutive model for a sustainable orthotropic material. Existing methods for constitutive models of wood were improved upon to include the nonlinear stress-strain response not only in the two orthogonal axes but at any orientation to the strong axis of the material. This method also simplifies the nonlinear stress-strain relationships into bilinear stress-strain curves which can be valuable in hand calculations as well as finite-element analyses. The effectiveness of the proposed constitutive model is demonstrated by comparing bilinear stress-strain predictions to experimental data.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1436 |
Date | 01 December 2010 |
Creators | Baza, Jorien Gill |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses and Project Reports |
Page generated in 0.0158 seconds