Return to search

Investigating the Effect of Rutaecarpine on the Benzo[a]pyrene-Induced DNA Damage in vitro

Benzo[a]pyrene (BaP), is one of the most potent mutagens and carcinogens known. It requires metabolic activation through cytochrome P450 (CYP)1A1 to yield the ultimate carcinogenic metabolite, benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). BPDE can bind to DNA and form predominantly covalent (+) trans adducts at the N2 position of guanine causing DNA damage. Rutaecarpine (RTC) is an herbal medicine that has been used to treat several diseases such as headache, hypertension, gastrointestinal disorders, amenorrhea, and anti-inflammation. It has also been reported as a potent inducer of CYP enzymes, including CYP1A1, and CYP1A2. The mechanisms underlying up-regulation of CYP1A1 by RTC is dependent on aryl hydrocarbon receptors. Meanwhile, RTC can inhibit the activity of CYP1A1, CYP1A2 and CYP1B1.
To investigate the effect of RTC on the BaP-induced DNA damage, we analyzed the CYP1A1 enzyme activity and DNA damage level in two cell lines, namely mucoepidermoid pulmonary carcinoma cells (H292) and hepatocellular carcinoma cells (Hep3B). The cells either were treated with only 5 μM BaP or 1.25, 2.5, 5 and 10 μM RTC, respectively; or were co-administrated 5 μM BaP and one of the four concentrations of RTC for 24 hours. Ethoxyresorufin-O-deethylase (EROD) assay was used to detect CYP1A1 enzyme activity. The results showed that both BaP and RTC significantly (p<0.05) induced CYP1A1 enzyme activity when administered separately, with RTC induction exhibiting a concentration-dependent manner. Interestingly, co-administration of RTC with BaP, especially at high concentration (10 μM) of RTC, induced less CYP1A1 enzyme activity compared to either only RTC or BaP administration. MuseTM Multi-Color DNA Damage kit was used to evaluate the DNA damage level in cells. The data showed that the DNA damage induced by BaP alone was about 2-fold higher (p&;lt;0.05) than that by concurrent administration of RTC and BaP.
In conclusion, our data showed that although both RTC and BaP are inducers of CYP1A1 enzyme, their co-administration will reduce CYP1A1 enzyme activity compared with BaP administration alone. The DNA damage kit results supported that there is a potential protective effect of RTC against BaP-induced DNA damage in both H292 and Hep3B cells.

Identiferoai:union.ndltd.org:pacific.edu/oai:scholarlycommons.pacific.edu:uop_etds-4639
Date01 January 2019
CreatorsLi, You
PublisherScholarly Commons
Source SetsUniversity of the Pacific
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of the Pacific Theses and Dissertations

Page generated in 0.0314 seconds