O problema de n?corpos é um dos problemas mais importantes em Sistemas Dinâmicos. Nós estudamos o modelo do problema dos três corpos restrito introduzido por Sitnikov. Nesse modelo os corpos primários tem a mesma massa e o terceiro corpo é de massa muito pequena com respeito aos corpos primários. Usando os métodos de Alekseev, nós mostramos a existência de uma ?ferradura de Smale?como um subsistema da dinâmica do terceiro corpo e concluímos ricas conseqüências probabilísticas. Nós também estudamos o problema pelo método de Melnikov / The n?body problem is one of the most important problems in dynamical systems. We study the model introduced by Sitnikov of restricted three body problem. In this model the primaries are of equal mass and the third body is very small with respect to the primaries. Using methods of Alekseev, we show the existence of ?Smale horseshoe?as a subsystem of the dynamic of the third body and conclude rich probabilistic consequences. We also study the same problem by Melnikov?s method
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-09052007-142925 |
Date | 23 February 2007 |
Creators | Fernando Pereira Micena |
Contributors | Ali Tahzibi, Carlos Alberto Maquera Apaza, Claudio Aguinaldo Buzzi |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds