京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20778号 / 情博第658号 / 新制||情報||113(附属図書館) / 京都大学大学院情報学研究科通信情報システム専攻 / (主査)教授 小野寺 秀俊, 教授 佐藤 高史, 教授 黒橋 禎夫 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
Identifer | oai:union.ndltd.org:kyoto-u.ac.jp/oai:repository.kulib.kyoto-u.ac.jp:2433/228252 |
Date | 24 November 2017 |
Creators | Shiomi, Jun |
Contributors | 小野寺, 秀俊, 佐藤, 高史, 黒橋, 禎夫, 塩見, 準, シオミ, ジュン |
Publisher | Kyoto University, 京都大学 |
Source Sets | Kyoto University |
Language | English |
Detected Language | English |
Type | doctoral thesis, Thesis or Dissertation |
Format | application/pdf |
Rights | Cited from:, Jun Shiomi, Tohru Ishihara, and Hidetoshi Onodera, “A Necessary and Sufficient Condition of Supply and Threshold Voltages in CMOS Circuits for Minimum Energy Point Operation, ” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E100-A, no. 12, pp. (TBD), Dec. 2017 (to appear). (🄫2017 IEICE), Jun Shiomi, Tohru Ishihara, and Hidetoshi Onodera, “Area-Efficient Fully Digital Memory Using Minimum Height Standard Cells for Near-Threshold Voltage Computing, ” Integration, the VLSI Journal, Elsevier, 2017, in press http://dx.doi.org/10.1016/j.vlsi.2017.07.001 (🄫2017 Elsevier), Jun Shiomi, Tohru Ishihara, and Hidetoshi Onodera, “Statistical Timing Modeling Based on a Lognor- mal Distribution Model for Near-Threshold Circuit Optimization, ” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E98-A, no. 07, pp. 1455–1466, Jul. 2015. (🄫2015 IEICE), Jun Shiomi, Tohru Ishihara, and Hidetoshi Onodera, “An Energy-Efficient On-Chip Memory Structure for Variability-Aware Near-Threshold Operation, ” in International Symposium on Quality Electronic Design, Mar. 2015, pp. 23–28. (🄫2015 IEEE), Jun Shiomi, Tohru Ishihara, and Hidetoshi Onodera, “Microarchitectural-Level Statistical Timing Models for Near-Threshold Circuit Design, ” in Asia and South Pacific Design Automation Conference, Jan. 2015, pp. 87–93. (🄫2015 IEEE), Figure 2.2: The definition of kσ worst case delay.(🄫2015 IEICE), Figure 3.1: Definition of averaging effect ratio.(🄫2015 IEICE), Figure 3.2: Buffer chain example where all buffers have the same fan-out. (🄫2015 IEICE), Figure 3.3: Buffer chain simulation result (VDD = 0.4 V). μ = - 21, σ = 0.21 and r = 0.32. (🄫2015 IEICE), Figure 3.4: Averaging effect ratio for buffer chains. (🄫2015 IEICE), Figure 3.5: Logic depth vs. the 4σ worst case delay. (🄫2015 IEICE), Figure 3.6: Parallelism of 8-stage-buffer chains. (🄫2015 IEICE), Figure 3.7: The number of critical paths Ncp vs. the 3σ worst case delay. The logic depth is 8. (🄫2015 IEICE), Figure 3.8: The number of critical paths Ncp vs. the 3σ worst case delay. The logic depth is 1. (🄫2015 IEEE), Figure 3.9: Delay distributions for different gate sizes. (🄫2015 IEICE), Figure 3.10: Buffer size X vs. 4σ worst case delay. (🄫2015 IEICE), Figure 3.11: The 4σ worst case delay for different gate sizes. (🄫2015 IEICE), Figure 3.12: Test circuit structure for NAND2 and NOR2. (🄫2015 IEICE), Figure 3.13: Averaging effect ratio for NAND2/NOR2 chains. (🄫2015 IEICE), Figure 3.14: Logic depth vs. 4σ worst case delay for NAND2/NOR2 chains. (🄫2015 IEICE), Figure 3.15: The number of critical paths Ncp vs. the 3σ worst case delay for NAND2/NOR2 chains. (🄫2015 IEICE), Figure 3.16: Gate size X vs. 4σ worst case delay for NAND2/NOR2 chains. (🄫2015 IEICE), Figure 3.17: The 4σ worst case delay of NAND2/NOR2 chains with different gate sizes. (🄫2015 IEICE), Figure 3.18: p-parallel n-stage buffer chains where all buffers in chains have the same gate size X. (🄫2015 IEICE), Figure 3.20: Memory readout structure. (a) SRAM (b) SCM. (🄫2015 IEEE), Figure 3.21: CDF versus readout delay. (🄫2015 IEEE), Figure 4.1: The concept of minimum height standard-cells. (🄫2017 Elsevier), Figure 4.2: An inverter cell with minimum cell height. (🄫2017 Elsevier), Figure 4.3: Simplified latch schematic and clock-shared 4-bit latch. (🄫2017 Elsevier), Figure 4.4: Proposed SCM structure. (🄫2017 Elsevier), Figure 4.5: Write clocking scheme of the proposed SCM. (🄫2017 Elsevier), Figure 4.6: Readout scheme of the proposed SCM. (🄫2017 Elsevier), Figure 4.7: (a) Schematic of cross-coupled inverters. (b) Butterfly curve of cross-coupled inverters. (🄫2017 Elsevier), Figure 4.8: Verification of the analytical stability model of latch cells (4.2). (🄫2017 Elsevier), Figure 4.9: Yields of latch cells for various gate widths. (🄫2017 Elsevier), Figure 4.10: The layout of minimum height standard-cells. (🄫2017 Elsevier), Figure 4.11: Layouts of the proposed 16 kb SCM (512 32). (🄫2017 Elsevier), Figure 4.12: Area-comparison between the proposed SCMs, prior-art SCMs and SRAMs. The area of the SCMs in [1] is multiplied by (100 nm=50 nm)2 = 4. (🄫2017 Elsevier), Figure 4.13: Estimated maximum operating frequency with a scaled VDD. (🄫2017 Elsevier), Figure 4.14: Estimated write energy consumption per bit with a scaled VDD. (🄫2017 Elsevier), Figure 4.15: Estimated read energy consumption per bit with a scaled VDD. (🄫2017 Elsevier), Figure 4.16: Estimated sleep energy consumption per bit with a scaled VDD. (🄫2017 Elsevier), Figure 4.17: Leakage power per bit with a scaled VDD. (🄫2017 Elsevier), Figure 5.2: Energy and performance contours for a 50-stage inverter chain. Solid line: energy contour. Dashed line: performance contour. Bold line: minimum energy curve. (🄫2017 IEICE), Figure 5.3: Minimum energy points in sub-threshold region. (🄫2017 IEICE), Figure 5.4: Minimum energy curve of a circuit designed with a 28-nm process technology. (🄫2017 IEICE), Figure 5.5: Minimum energy points in super-threshold region. (🄫2017 IEICE), Figure 5.6: Minimum energy curves for different temperature and activity. (🄫2017 IEICE), Figure 5.8: The SCM structure. (🄫2017 IEICE), Figure 5.9: Minimum energy curve of the SCM. Solid line: energy contour [nJ/cycle]. Dashed line: Fmax contour. Bold line: minimum energy curve. (🄫2017 IEICE), Figure 5.12: Ed/Es ratio on MEPs. (🄫2017 IEICE), Figure 5.13: Ed/Es ratio on 391 kHz Fmax contour. (🄫2017 IEICE), Figure 5.14: Ed/Es ratio on 8 MHz Fmax contour. (🄫2017 IEICE), Figure 5.15: Ed/Es ratio on 28.57 Hz Fmax contour. (🄫2017 IEICE), Figure 5.16: Definition of the parameter αM. (🄫2017 IEICE), Figure 5.17: Minimum energy curve of the SCM for αM = 0.1. Solid line: energy contour [nJ/cycle].Dashed line: Fmax contour. Bold line: minimum energy curves. (🄫2017 IEICE), Table 3.1: Summary of properties. C: Corollary. L: Lemma. T: Theorem. p: degree of parallelism. N: logic depth. W: gate width. L: gate length. STV: Super-Threshold Voltage. (🄫2015 IEICE), Table 4.1: 5.5-track minimum height standard cell library in the target 65-nm FD-SOI process technology. (🄫2017 Elsevier), Table 4.2: Comparison between Prior-Art SCMs and SRAMs. (🄫2017 Elsevier) |
Page generated in 0.0031 seconds