A Steiner triple system of order v, denoted STS(v), is said to be tricyclic if it admits an automorphism whose disjoint cyclic decomposition consists of three cycles. In this thesis we give necessary and sufficient conditions for the existence of a tricyclic STS(v) when one of the cycles is of length one. In this case, the STS(v) will contain a subsystem which admits an automorphism consisting of a fixed point and a single cycle. The subsystem is said to be 1-rotational.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-3463 |
Date | 14 August 2007 |
Creators | Tran, Quan Duc |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0022 seconds