Cheyne-Stokes respiration is a distinct breathing pattern consisting of periods of hyperpnea followed by apneas, with unknown etiology. One in two patients with congestive heart failure suffer from this condition. Researchers hypothesize that key factors in CSR are the fluid shift from the standing to supine position and the differences between genders. A mathematical model of the cardio-respiratory system was constructed using parameter values from real data. Hopf bifurcation analysis was used to determine regions of stable versus oscillatory breathing patterns. In the model, Cheyne-Stokes respiration is more likely to occur while in the supine position and males are more likely to develop Cheyne-Stokes than females. These findings, which are in agreement with clinical experience, suggest that both gender and fluid shift contribute to the pathogenesis of Cheyne-Stokes respiration, and that physical quantities such as blood volumes and neural feedback may be sufficient to explain the observations of CSR. / Department of Mathematics and Statistics
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OGU.10214/5341 |
Date | 18 January 2013 |
Creators | Wilcox, Marianne |
Contributors | Willms, Allan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0017 seconds