Despite the increased cost of data breaches due to advanced, persistent threats from malicious sources, the adoption of big data security analytics among U.S. small businesses has been slow. Anchored in a diffusion of innovation theory, the purpose of this correlational study was to examine ways to increase the adoption of big data security analytics among small businesses in the United States by examining the relationship between small business leaders' perceptions of big data security analytics and their adoption. The research questions were developed to determine how to increase the adoption of big data security analytics, which can be measured as a function of the user's perceived attributes of innovation represented by the independent variables: relative advantage, compatibility, complexity, observability, and trialability. The study included a cross-sectional survey distributed online to a convenience sample of 165 small businesses. Pearson correlations and multiple linear regression were used to statistically understand relationships between variables. There were no significant positive correlations between relative advantage, compatibility, and the dependent variable adoption; however, there were significant negative correlations between complexity, trialability, and the adoption. There was also a significant positive correlation between observability and the adoption. The implications for positive social change include an increase in knowledge, skill sets, and jobs for employees and increased confidentiality, integrity, and availability of systems and data for small businesses. Social benefits include improved decision making for small businesses and increased secure transactions between systems by detecting and eliminating advanced, persistent threats.
Identifer | oai:union.ndltd.org:waldenu.edu/oai:scholarworks.waldenu.edu:dissertations-7893 |
Date | 01 January 2019 |
Creators | Mathias, Henry |
Publisher | ScholarWorks |
Source Sets | Walden University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Walden Dissertations and Doctoral Studies |
Page generated in 0.0023 seconds