Bilirrubina oxidase de Myrothecium verrucaria é uma multicobre oxidase capaz de reduzir O2 pela oxidação de fenóis, aminas aromáticas e polipirróis. Eletroquimicamente, essa reação de redução ocorre pela transferência de elétrons entre a enzima e um eletrodo. Nesta tese, foi investigada a eficiência da enzima como agente redutor de O2 na superfície de eletrodos modificados pela função orgânica naftil-2-carboxilato por acoplamento de diazônio. Essa modificação na superfície do eletrodo aumenta em até quatro vezes a atividade do filme catalítico em relação à obtida por eletrodos em que a adsorção da enzima foi feita de forma convencional, sem a modificação. Foram estudados os efeitos da temperatura sobre a atividade da enzima para a redução de O2, sendo observado um aumento linear da atividade do eletrodo com o aumento da temperatura até 30 °C, de tal forma que temperaturas mais altas proporcionaram o aumento da inativação natural das moléculas de enzima. Esse efeito de inativação foi confirmado pela diminuição da atividade com o tempo na presença de O2, por cronoamperometria, sendo a atividade interrompida pela inserção de argônio e retomada do mesmo ponto pela reinserção de O2, descartando a idéia da queda de corrente proveniente da dessorção de enzima. Foi estudado também o efeito do pH na máxima atividade da bilirrubina oxidase, conduzidos entre pH 5,0 e 8,0, e verificando-se que a máxima atividade da enzima foi obtida entre pH 5,5 e 6,0 e, além disso, verificou-se que a corrente catalítica em baixos valores de pH aumenta diretamente com o aumento do sobrepotencial aplicado. Porém, em altos valores de pH, a curva de redução toma a forma sigmoidal e passa a ser independente do sobrepotencial aplicado, sendo a reação governada por etapas químicas de transferência de prótons. O uso de eletrodos de disco rotatório possibilitou resolver parâmetros de Michaelis-Menten para a cinética do filme catalítico de forma mais precisa (a resposta de corrente é menos dependente do transporte de massa de reagentes) e esses dados foram obtidos dentro de um intervalo de pH importante para aplicações práticas. O sobrepotencial da reação de redução de O2 catalisada por bilirrubina oxidase foi comparado com o sobrepotencial obtido para a mesma reação catalisada por Platina eletrodepositada sobre a superfície de grafite pirolítico, onde foi observado um sobrepotencial de 140 mV para a catálise enzimática, demasiado menor que o valor de 415 mV obtidos para a Platina, sob as mesmas condições experimentais, em pH neutro. A metodologia proposta para a construção de um cátodo para aplicação em células a combustível enzimáticas e os subsequentes estudos possibilitaram uma investigação minuciosa para caracterizar a enzima bilirrubina oxidase como talvez o catalisador mais eficiente na redução eletroquímica de oxigênio molecular em células a combustível até o momento. / Bilirubin oxidase from Myrothecium verrucaria is a multicopper oxidase reducing O2 at the expenses of phenols, aromatic amines and polypyrrols oxidation. Electrochemically, this reduction reaction undergoes through the electron transfer between enzyme and electrode. In this thesis, the enzyme was investigated as an efficient O2 reducing agent on electrode surfaces modified by naphthil-2-carboxylate functionalities through diazonium coupling. This modification of the electrode surface increases the activity of the catalytic film up to four times comparing to that obtained by electrodes in which the enzyme molecules were adsorbed conventionally, without modification. It was studied the effect of temperature on O2 reduction, in which catalysis increased linearly with temperature up to 30 °C, and higher temperatures increased the natural enzyme inactivation. This inactivation was confirmed by the activity drop off with time in the presence of O2, by chronoamperometry, ceased out when argon was inserted into the cell and re-established from the same point when argon was purged out by insertion of O2. These results cast aside the idea of activity drop off caused by enzyme desorption. It was also investigated the pH effect on the maximum activity of bilirubin oxidase, carried out between pH 5.0 and 8.0, being the highest activity obtained at pH 5.5-6.0. Furthermore, it was observed that the catalytic current directly increases with applied overpotential, at low pH values, and the reduction wave shape becomes sigmoidal and independent on applied overpotential at high pH values. The reaction is then governed by chemical steps, as the proton transfer. The use of rotating-disc electrodes favored solving the Michaelis-Menten kinetics for the catalytic film in a much greater accuracy (the current response is much less dependent on reagent mass transport) and these data were obtained for pH interval important for practical applications. The overpotential for the O2 reduction reaction catalyzed by bilirubin oxidase was compared to the overpotential obtained by the same reaction catalyzed by Platinum electrodeposited onto a pyrolytic graphite electrode. An overpotential of only 140 mV was observed for the enzymatic catalysis, much lower compared to the 415 mV obtained for the Platinum electrode, under the same experimental conditions, at neutral pH. The proposed method for constructing a cathode for enzymatic fuel cell application and subsequent investigation described allowed an in-depth study of bilirubin oxidase characterization as perhaps the most efficient catalysts for the electrochemical reduction of molecular oxygen in fuel cells to date.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-05102010-084532 |
Date | 12 August 2010 |
Creators | Santos, Luciano dos |
Contributors | Gonzalez, Ernesto Rafael |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0026 seconds