Return to search

Investigation of multicomponent catalyst systems for type-selective growth of SWCNTs by CVD

Excellent electronic properties of semiconducting single-walled carbon nanotubes (sc-SWCNTs) motivated the investigation for using them in different application areas such as microelectronics, sensorics, MEMS and MOEMS. However, challenges arise from the lack of selectivity with respect to electronic type and chirality as well as ensuring high quality, high purity and well-aligned SWCNTs during fabrication process. Catalytic chemical vapour deposition (CCVD) has shown great potential in direct synthesis of high quality SWCNTs with chiral or type selectivity.
This thesis addresses three important aspects for growth of sc-SWCNT covering method development for fast screening for complex catalyst systems, process development for type-selective growth of SWCNTs and transfer of processes to a specific CVD reactor capable to scale the processes up to 8-inches wafer embedded in the microtechnologic process line. Multi-wavelengths Raman spectroscopy is applied to analyze type and chiral compositions of SWCNTs. In addition, different microscopic techniques of SEM, TEM and AFM are utilized to analyze surface morphology of catalyst layers and size of the nanoparticles as well as structure-related properties of SWCNTs. Initially, systematic studies on monometallic Co and bimetallic Co-Mo systems with different bilayer thickness configurations and their influences on the properties of grown SWCNTs are conducted on chip level. It is shown by adjusting the catalyst deposition conditions of bilayer catalyst as well as optimization of gas environments in CCVD process, structure-related properties of SWCNTs are dramatically enhanced. Furthermore, by utilizing shutter-assisted sputter deposition of gradient layer catalyst, a fast and efficient method for screening different bilayer configurations of Co-Mo, Co-Ru and Ni-Ru has been developed. By utilizing gradient layer deposition with finely resolved catalyst thicknesses, random network SWCNT is grown on bimetallic Co-Mo system under certain process condition with 45% (at 633 nm) and 75% (at 785 nm) semiconducting enrichment of long and high quality SWCNT. In contrast, bimetallic Co-Ru system under certain process condition is developed to grow in-plane SWCNT with 85% (at 633 nm) and 75% (at 785 nm) semiconducting enrichment of short and low quality SWCNT. In addition, different configurations of the bimetallic Co-Ru system are prepared from salt precursors by spin-coating technique. For a mixture of cobalt (II) chloride and ruthenium (III) nitrosylacetate, random network SWCNT with 70% (at 633 nm) and 95% (at 785 nm) semiconducting enrichment of long SWCNTs with high quality is obtained on wafer level. Random network SWCNT with high degree of semiconducting enrichment is used as channel material for thin-film transistors fabrication that results in CNTFET with on/off ratio in the order of 10*3:Bibliographic description 3
Vorwort 9
List of abbreviations and symbols 11
1 Introduction 15
2 Fundamentals of carbon nanotubes 21
2.1 Chemical bonds in carbon structures 21
2.2 Different allotropes of carbon 22
2.3 History of carbon nanotubes research 23
2.4 Structure of carbon nanotubes 24
2.5 Electronic properties of carbon nanotubes 26
2.6 Synthesis of carbon nanotubes 27
2.7 Growth mechanism of carbon nanotubes by CCVD 29
2.8 Catalyst for CCVD synthesis of SWCNTs 31
2.8.1 Catalyst nanoparticle formation from thin film 32
2.8.2 Mechanism of solid state dewetting 33
2.9 CCVD synthesis of SWCNT 35
2.10 Selective synthesis of SWCNT 37
3 Experimental 39
3.1 Preparation of different catalyst/support systems 39
3.1.1 Homogenous layer of catalyst prepared by PVD 39
3.1.2 Gradient layer deposition of catalyst by IBSD 41
3.1.3 Homogenous layer of catalyst prepared by spin coating 45
3.2 CVD reactors for synthesis of SWCNT 46
3.2.1 R&D vertical flow CVD reactor with showerhead 46
3.2.2 Industrial vertical flow CVD reactor with showerhead 47
3.2.3 Horizontal flow tube CVD reactor 49
3.3 Methods for characterization 50
3.3.1 Atomic force microscopy 50
3.3.2 Raman spectroscopy 50
3.3.3 Spectroscopic ellipsometry 56
3.3.4 X-ray reflection 56
3.3.5 Scanning electron microscopy 56
3.3.6 Transmission electron microscopy 56
4 Growth of SWCNT using PVD catalyst layer in vertical CVD reactor A 57
4.1 Monometallic Co catalyst supported on SiO2 57
4.1.1 Surface and morphological analysis of SiO2/Co 57
4.1.2 Analysis of CCVD grown SWCNT on SiO2/Co 59
4.1.3 Chirality and diameter analysis of SWCNTs on SiO2/Co 61
4.2 Monometallic Co catalyst supported on Al2O3 62
4.2.1 Surface and morphological analysis of Al2O3/Co 62
4.2.2 Analysis of CCVD grown SWCNT on Al2O3/Co 63
4.2.3 Chirality and diameter analysis of SWCNTs on Al2O3/Co 67
4.3 Bimetallic Co-Mo catalyst supported on Al2O3 68
4.3.1 Surface and Morphological analysis of Al2O3/Co-Mo 68
4.3.2 Effect of IBSD deposition parameters on NP formation 71
4.3.3 Analysis of CCVD grown SWCNT on Al2O3/Co-Mo 72
4.3.4 Chirality and diameter analysis of SWCNTs on Al2O3/Co-Mo 76
4.4 Comparison of SWCNT from different catalyst configurations 77
5 Growth of SWCNT using gradient layer of catalyst 79
5.1 Analysis of grown SWCNT on Co-Mo using step gradient A 79
5.2 Analysis of grown SWCNT on Co-Mo using step gradient B 80
5.2.1 Growth of SWCNT by utilizing shutter at position I 80
5.2.2 Growth of SWCNT by utilizing shutter at position II 82
5.2.3 Effect of vacuum breaking on CCVD growth of SWCNT 83
6 Growth of SWCNT using gradient layer catalyst in vertical CVD reactor B 87
6.1 SWCNT growth on gradient layer of monometallic catalyst 87
6.1.1 Analysis of CCVD grown SWCNT on gradient layer of Co 87
6.1.2 Analysis of CCVD grown SWCNT on gradient layer of Ni 89
6.1.3 Comparison of SWCNT properties for monometallic of Ni and Co 90
6.2 SWCNT growth on gradient layer of bimetallic catalyst 92
6.2.1 Analysis of CCVD grown SWCNT on gradient layer of Co-Mo 92
6.2.2 Analysis of CCVD grown SWCNT on gradient layer of Co-Ru 95
6.2.3 Comparison of SWCNTs on Co-Mo and Co-Ru catalyst systems 98
6.2.4 Analysis of CCVD grown SWCNTs on gradient layer of Ni-Ru 100
7 Growth of SWCNT using spin-coated catalyst precursor in horizontal CVD reactor 103
7.1 Effect of CCVD growth temperature on SWCNT properties 103
7.2 Effect of catalyst calcination temperature on SWCNT properties 103
7.3 Analysis of CCVD grown SWCNT on Co and Co-Ru 105
7.3.1 Monolayer configuration of different Co precursors 105
7.3.2 Bilayer configuration of Co and Ru precursors 106
7.3.3 Trilayer configuration of Co and Ru precursors 107
7.3.4 Monolayer configuration of Mixture Co and Ru precursors 109
7.3.5 Comparison of SWCNTs on different catalyst configurations 110
8 Growth of SWCNT using spin-coated catalyst precursor in vertical CVD reactor B 113
8.1 Growth of SWCNT on Mixture of Co and Ru precursors 113
8.2 Effect of CVD reactor geometry on SWCNT properties 115
8.3 Effect of catalyst preparation technique on SWCNT properties 116
8.4 Wafer-level growth of SWCNT on bimetallic Co-Ru 117
9 SWCNT-based device fabrication 119
9.1 Different approaches for SWCNT-based device fabrication 119
9.2 Growth-based technique for SWCNT-based device fabrication 121
9.2.1 FET fabrication on in-plane random network SWCNT 121
9.2.2 FET fabrication on out-of-plane random network SWCNT 123
10 Summary and outlook 127
Appendix 131
Bibliography 171
List of tables 183
List of figures 185
Versicherung 197
Theses 199
Curriculum vitae 201
List of publications 203 / Die hervorragenden elektronischen Eigenschaften von halbleitenden, einwandigen Kohlenstoff-Nanoröhren (sc-SWCNTs haben die Untersuchung dazu veranlasst, sie in verschiedenen Anwendungsbereichen wie der Mikroelektronik, Sensorik, MEMS und MOEMS einzusetzen. Herausforderungen ergeben sich jedoch aus dem Mangel an Selektivität bezüglich elektronischer Bauart und Chiralität sowie der Sicherstellung hoher Qualität, hoher Reinheit und gut aufeinander abgestimmter SWCNTs während des Herstellungsprozesses. Die Katalytische chemische Gasphasenabscheidung (CCVD) zeigt ein großes Potenzial bei der direkten Synthese von hochqualitativen SWCNTs mit Chiraler- oder Typenselektivität.
Diese Dissertation behandelt drei wichtige Aspekte für das Wachstum von sc-SWCNT und deckt die Methodenentwicklung des schnellen Screenings für komplexe Katalysatorsysteme, die Prozessentwicklung für das typselektive Wachstum von SWCNTs und die Übertragung von Prozessen in einen spezifischen CVD-Reaktor ab. Der Reaktor, welcher eingebettet in die mikrotechnologische Prozesslinie ist, kann Wafer bis zu 8- Zoll verarbeiten. Raman-Spektroskopie mit mehreren Wellenlängen wird verwendet, um die Zusammensetzung von SWCNTs zu analysieren. Darüber hinaus werden verschiedene mikroskopische Techniken von REM, TEM und AFM verwendet, um die Oberflächenmorphologie von Katalysatorschichten und die Größe der Nanopartikel sowie die strukturbezogenen Eigenschaften von SWCNTs zu analysieren. Zunächst werden systematische Untersuchungen an monometallischen Co- und Bimetall-Co-Mo-Systemen mit unterschiedlichen Doppelschichtdickenkonfigurationen durchgeführt und deren Einfluss auf die Eigenschaften gewachsener SWCNTs auf Chipebene untersucht. Es wird gezeigt, dass durch Einstellung der Katalysatorabscheidungsbedingungen des Doppelschichtkatalysators sowie durch Optimierung der Gasumgebung im CCVD-Prozess die strukturbezogenen Eigenschaften von SWCNTs drastisch verbessert werden können. Darüber hinaus wurde durch die Verwendung eines Gradientenschichtkatalysators, welcher mittels einer Shutter-unterstützten Zerstäubungsabscheidung hergestellt wurde, ein schnelles und effizientes Verfahren zum Untersuchen verschiedener Doppelschichtkonfigurationen von Co-Mo, Co-Ru und Ni-Ru entwickelt. Unter Verwendung der Abscheidung einer Gradientenschicht mit einer fein aufgelösten Katalysatordicke wurden ungerichtete SWCNTs auf einem bimetallischen Co-Mo-System unter definierten Prozessbedingungen mit 45% (bei 633 nm) und 75% (bei 785 nm) halbleitender Anreicherung von langem und hochwertigem SWCNT gezüchtet. Im Gegensatz dazu wird das bimetallische Co-Ru-System unter definierten Prozessbedingungen entwickelt, um SWCNT in der Ebene mit 85% (bei 633 nm) und 75% (bei 785 nm) halbleitender Anreicherung von kurzer und geringer Qualität von SWCNT zu wachsen. Außerdem werden verschiedene Konfigurationen des Bimetall-Co-Ru-Systems aus Salzvorläufern durch Spin-Coating-Technik hergestellt. Es zeigt sich für die Bimetallkonfiguration, die durch Mischung von Cobalt (II) -chlorid und Ruthenium (III) -nitrosylacetat, ein zufälliges Netzwerk SWCNT zu 70% (bei 633 nm) und 95% (bei 785 nm) halbleitender Anreicherung langer SWCNTs mit hohem Anteil hergestellt wurde Qualität wird auf Waferebene gewachsen. Ein zufälliges Netzwerk-SWCNT mit einem hohen Grad an halbleitender Anreicherung wird als Kanalmaterial für die Herstellung von Dünnschichttransistoren verwendet, was zu einem CNTFET mit einem Ein / Aus-Verhältnis um 10*3 führte.:Bibliographic description 3
Vorwort 9
List of abbreviations and symbols 11
1 Introduction 15
2 Fundamentals of carbon nanotubes 21
2.1 Chemical bonds in carbon structures 21
2.2 Different allotropes of carbon 22
2.3 History of carbon nanotubes research 23
2.4 Structure of carbon nanotubes 24
2.5 Electronic properties of carbon nanotubes 26
2.6 Synthesis of carbon nanotubes 27
2.7 Growth mechanism of carbon nanotubes by CCVD 29
2.8 Catalyst for CCVD synthesis of SWCNTs 31
2.8.1 Catalyst nanoparticle formation from thin film 32
2.8.2 Mechanism of solid state dewetting 33
2.9 CCVD synthesis of SWCNT 35
2.10 Selective synthesis of SWCNT 37
3 Experimental 39
3.1 Preparation of different catalyst/support systems 39
3.1.1 Homogenous layer of catalyst prepared by PVD 39
3.1.2 Gradient layer deposition of catalyst by IBSD 41
3.1.3 Homogenous layer of catalyst prepared by spin coating 45
3.2 CVD reactors for synthesis of SWCNT 46
3.2.1 R&D vertical flow CVD reactor with showerhead 46
3.2.2 Industrial vertical flow CVD reactor with showerhead 47
3.2.3 Horizontal flow tube CVD reactor 49
3.3 Methods for characterization 50
3.3.1 Atomic force microscopy 50
3.3.2 Raman spectroscopy 50
3.3.3 Spectroscopic ellipsometry 56
3.3.4 X-ray reflection 56
3.3.5 Scanning electron microscopy 56
3.3.6 Transmission electron microscopy 56
4 Growth of SWCNT using PVD catalyst layer in vertical CVD reactor A 57
4.1 Monometallic Co catalyst supported on SiO2 57
4.1.1 Surface and morphological analysis of SiO2/Co 57
4.1.2 Analysis of CCVD grown SWCNT on SiO2/Co 59
4.1.3 Chirality and diameter analysis of SWCNTs on SiO2/Co 61
4.2 Monometallic Co catalyst supported on Al2O3 62
4.2.1 Surface and morphological analysis of Al2O3/Co 62
4.2.2 Analysis of CCVD grown SWCNT on Al2O3/Co 63
4.2.3 Chirality and diameter analysis of SWCNTs on Al2O3/Co 67
4.3 Bimetallic Co-Mo catalyst supported on Al2O3 68
4.3.1 Surface and Morphological analysis of Al2O3/Co-Mo 68
4.3.2 Effect of IBSD deposition parameters on NP formation 71
4.3.3 Analysis of CCVD grown SWCNT on Al2O3/Co-Mo 72
4.3.4 Chirality and diameter analysis of SWCNTs on Al2O3/Co-Mo 76
4.4 Comparison of SWCNT from different catalyst configurations 77
5 Growth of SWCNT using gradient layer of catalyst 79
5.1 Analysis of grown SWCNT on Co-Mo using step gradient A 79
5.2 Analysis of grown SWCNT on Co-Mo using step gradient B 80
5.2.1 Growth of SWCNT by utilizing shutter at position I 80
5.2.2 Growth of SWCNT by utilizing shutter at position II 82
5.2.3 Effect of vacuum breaking on CCVD growth of SWCNT 83
6 Growth of SWCNT using gradient layer catalyst in vertical CVD reactor B 87
6.1 SWCNT growth on gradient layer of monometallic catalyst 87
6.1.1 Analysis of CCVD grown SWCNT on gradient layer of Co 87
6.1.2 Analysis of CCVD grown SWCNT on gradient layer of Ni 89
6.1.3 Comparison of SWCNT properties for monometallic of Ni and Co 90
6.2 SWCNT growth on gradient layer of bimetallic catalyst 92
6.2.1 Analysis of CCVD grown SWCNT on gradient layer of Co-Mo 92
6.2.2 Analysis of CCVD grown SWCNT on gradient layer of Co-Ru 95
6.2.3 Comparison of SWCNTs on Co-Mo and Co-Ru catalyst systems 98
6.2.4 Analysis of CCVD grown SWCNTs on gradient layer of Ni-Ru 100
7 Growth of SWCNT using spin-coated catalyst precursor in horizontal CVD reactor 103
7.1 Effect of CCVD growth temperature on SWCNT properties 103
7.2 Effect of catalyst calcination temperature on SWCNT properties 103
7.3 Analysis of CCVD grown SWCNT on Co and Co-Ru 105
7.3.1 Monolayer configuration of different Co precursors 105
7.3.2 Bilayer configuration of Co and Ru precursors 106
7.3.3 Trilayer configuration of Co and Ru precursors 107
7.3.4 Monolayer configuration of Mixture Co and Ru precursors 109
7.3.5 Comparison of SWCNTs on different catalyst configurations 110
8 Growth of SWCNT using spin-coated catalyst precursor in vertical CVD reactor B 113
8.1 Growth of SWCNT on Mixture of Co and Ru precursors 113
8.2 Effect of CVD reactor geometry on SWCNT properties 115
8.3 Effect of catalyst preparation technique on SWCNT properties 116
8.4 Wafer-level growth of SWCNT on bimetallic Co-Ru 117
9 SWCNT-based device fabrication 119
9.1 Different approaches for SWCNT-based device fabrication 119
9.2 Growth-based technique for SWCNT-based device fabrication 121
9.2.1 FET fabrication on in-plane random network SWCNT 121
9.2.2 FET fabrication on out-of-plane random network SWCNT 123
10 Summary and outlook 127
Appendix 131
Bibliography 171
List of tables 183
List of figures 185
Versicherung 197
Theses 199
Curriculum vitae 201
List of publications 203

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:38384
Date25 February 2020
CreatorsMotaragheb Jafarpour, Saeed
ContributorsSchulz, Stefan E., Wågberg, Thomas, Technische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0038 seconds