Multidimensional frequency models can be used for modeling number of claims from different branches which are somehow dependent on each other. As in the one-dimensional case Poisson distribution and negative binomial distribution are primarily used for modeling multidimensional claim counts data, only they are extended to higher dimensions. The generalization of multi- dimensional distributions is often done using so-called shock variables, where one random variable is included in all dimensions of a random vector which models claim counts. The more comprehensive approach to modeling dependence uses copulas. Comparison of these models is done on a simulated data of number of claims from two different car insurance guarantees.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:405040 |
Date | January 2019 |
Creators | Zušťáková, Lucie |
Contributors | Mazurová, Lucie, Cipra, Tomáš |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0027 seconds