Pour mieux saisir les liens complexes entre génotype et phénotype, une méthode utilisée consiste à étudier les relations entre différents éléments biologiques (entre les protéines, entre les métabolites...). Celles-ci forment ce qui est appelé un réseau biologique, que l'on représente algorithmiquement par un graphe. Nous nous intéressons principalement dans cette thèse au problème de la recherche d'un motif (multi-ensemble de couleurs) dans un graphe coloré, représentant un réseau biologique. De tels motifs correspondent généralement à un ensemble d'éléments conservés au cours de l'évolution et participant à une même fonction biologique. Nous continuons l'étude algorithmique de ce problème et de ses variantes (qui admettent plus de souplesse biologique), en distinguant les instances difficiles algorithmiquement et en étudiant différentes possibilités pour contourner cette difficulté (complexité paramétrée, réduction d'instance, approximation...). Nous proposons également un greffon intégré au logiciel Cytoscape pour résoudre efficacement ce problème, que nous testons sur des données réelles.Nous nous intéressons également à différents problèmes de génomique comparative. La démarche scientifique adoptée reste la même: depuis une formalisation d'un problème biologique, déterminer ses instances difficiles algorithmiquement et proposer des solutions pour contourner cette difficulté (ou prouver que de telles solutions sont impossibles à trouver sous des hypothèses fortes)
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00667797 |
Date | 30 September 2011 |
Creators | Sikora, Florian |
Publisher | Université Paris-Est |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0025 seconds