Return to search

Physical Aspects of Min Oscillations in Escherichia Coli

The subject of this thesis is the generation of spatial temporal structures in living cells. Specifically, we studied the Min-system in the bacterium Escherichia coli. It consists of the MinC, the MinD, and the MinE proteins, which play an important role in the correct selection of the cell division site. The Min-proteins oscillate between the two cell poles and thereby prevent division at these locations. In this way, E. coli divides at the center, producing two daughter cells of equal size, providing them with the complete genetic patrimony. Our goal is to perform a quantitative study, both theoretical and experimental, in order to reveal the mechanism underlying the Min-oscillations. Experimentally, we characterize theMin-system, measuring the temporal period of the oscillations as a function of the cell length, the time-averaged protein distributions, and the in vivo Min-protein mobility by means of different fluorescence microscopy techniques. Theoretically, we discuss a deterministic description based on the exchange of Minproteins between the cytoplasm and the cytoplasmic membrane and on the aggregation current induced by the interaction between membrane-bound proteins. Oscillatory solutions appear via a dynamic instability of the homogenous protein distributions. Moreover, we perform stochastic simulations based on a microscopic description, whereby the probability for each event is calculated according to the corresponding probability in the master equation. Starting from this microscopic description, we derive Langevin equations for the fluctuating protein densities which correspond to the deterministic equations in the limit of vanishing noise. Stochastic simulations justify this deterministic model, showing that oscillations are resistant to the perturbations induced by the stochastic reactions and diffusion. Predictions and assumptions of our theoretical model are compatible with our experimental findings. Altogether, these results enable us to propose further experiments in order to quantitatively compare the different models proposed so far and to test our model with even higher precision. They also point to the necessity of performing such an analysis through single cell measurements.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1169728830839-77682
Date25 January 2007
CreatorsMeacci, Giovanni
ContributorsTechnische Universität Dresden, Physik, Max Planck Institut für Physik komplexer Systeme,, Prof. Dr. Karsten Kruse, Prof. Dr. Karsten Kruse, Prof. Dr. Petra Schwille, Dr. Martin Howard
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0027 seconds