Return to search

Conception de protéines artificielles multidomaines / Conception of multidomain artificial proteins

La création de nouvelles fonctions basées sur la reconnaissance protéique et sur l'assemblage de domaines est un enjeu majeur en biotechnologie et est un moyen de comprendre les relations structures/fonctions des protéines engagées dans des processus d'interactions. Aujourd’hui, des bibliothèques de protéines artificielles obtenues par ingénierie peuvent être sources de protéines aux propriétés de reconnaissance analogues à celles des dérivés d’anticorps.L’équipe Modélisation et Ingénierie des Protéines a ainsi construit une banque de protéines à motifs structuraux répétés appelées « alphaReps ». Les alphaReps présentent des propriétés remarquables en termes de production et de stabilité. Contrairement à la plupart des anticorps et dérivés d’anticorps, elles peuvent même s’exprimer sous forme fonctionnelle dans le cytoplasme de cellules eucaryotes. De tels objets peuvent donc maintenant être utilisés comme des briques élémentaires en vue d’une ingénierie modulaire. Ainsi la construction de nouvelles fonctions de reconnaissance optimisées tant au niveau de la spécificité que de l’affinité sera possible en réarrangeant et/ou dupliquant ces briques élémentaires.Un premier volet de ce projet de thèse a consisté à construire puis étudier les propriétés biophysiques de protéines bidomaines basées sur les alphaReps afin de mieux comprendre les comportements adoptés par de telles constructions. Outre l’aspect fondamental de cette question, cette étude donnera « les règles » pour moduler de façon contrôlée les interactions entre ces protéines. Les résultats montrent qu'il est possible de créer de nouvelles fonctions par simple ajout d'un linker entre deux alphaReps : avidité, coopérativité, changement de conformation.Dans un second temps, l’objectif a été de développer, à partir des protéines bidomaines précédemment étudiées, de nouveaux biosenseurs basés sur le FRET (Förster Resonance Energy Transfer) pouvant être utilisés in vivo et in vitro. Cette deuxième partie présente deux biosenseurs avec des limites de détection de l'ordre du nanomolaire. Les alphaReps utilisées dans ces constructions pouvant être changées en fonction de la cible souhaitée, il s'agit ici d'une preuve de concept pouvant être généralisée à n'importe quelle cible.Enfin la dernière partie de cette thèse s'est portée sur la conception et l'étude de nouveaux biosenseurs génétiquement codables. Ces biosenseurs présentent notamment l’avantage d’être utilisables immédiatement après production et ne nécessitent donc plus d’étape de couplage chimique. Les résultats obtenus montrent que la création de tels biosenseurs est possible mais qu’une optimisation reste encore nécessaire pour améliorer leur spécificité, leur stabilité et leur capacité de détection. / The creation of new protein functions based on recognition and molecular assembly is not only a major goal in biotechnology but is also a means to understand the relation structure/function of proteins involved in interaction processes. Today, libraries of artificial proteins obtained by engineering can be a source of proteins with recognition properties similar to the properties of antibodies.The team Protein Engineering and Modeling has thus created a library of proteins with structural repeats called the “alphaReps”. The alphaReps present remarkable properties in terms of production and stability. Unlike most of the antibodies and their derivatives, they can even be expressed and functional in the cytoplasm of eukaryotic cells. Such objects can therefore be used as building bricks in modular engineering. The construction of new optimized recognition functions both in specificity and in affinity can then be possible by rearranging or duplicating these elementary bricks.The first part of this thesis project consisted in the construction and study of the biophysical properties of bidomain proteins based on alphaRep in order to have a better understanding of the behaviour of such constructions. Beside the fundamental aspect of this question, this study will give the “rules” to modulate the interactions between these proteins in a controlled way. The results show that it is possible to create new functions such as avidity, cooperativity, conformational change, simply by adding a linker between two alphaReps.In a second step, the goal was to develop, with the bidomain proteins previously studied, new biosensors based on the FRET (Förster Resonance Energy Transfer) which can be used in vivo and in vitro. This second part presents two biosensors with limits of detection in the nanomolar range. Since the alphaReps used in these constructions can be changed depending on the chosen target, it is a proof of concept which can be adapted to any desired target.Finally, the third part of this thesis focused on the development of genetically codable biosensors. These biosensors have the particular advantage of being usable directly after production and therefore no longer require a chemical coupling step. The results show that the development of such biosensors is worth considering but an optimization is still required in order to improve their specificity, their stability and their detection capacity.

Identiferoai:union.ndltd.org:theses.fr/2018SACLS384
Date12 November 2018
CreatorsLéger, Corentin
ContributorsUniversité Paris-Saclay (ComUE), Minard, Philippe
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds