Return to search

Investigation of the roles of ion channels in the development of the sea urchin embryo

Ion channels and pumps play critical roles during sea urchin development including mediating the blocks to polyspermy, regulating left-right and dorsal-ventral axis specification, directing ventral PMC migration, and controlling biomineralization of the larval skeleton. We performed a screen of pharmacological ion channel inhibitors, and we chose two inhibitors to investigate further. First, we found that tricaine, a potent inhibitor of voltage-gated sodium channels (VGSCs), induces aberrant skeletal patterning in Lytechinus variegatus larvae. The larval skeleton is secreted by the primary mesenchyme cells (PMCs), which migrate within the blastocoel into a stereotypical pattern. We show that VGSC activity is required for normal PMC migration and skeletal patterning. Timed inhibitor studies identified VGSC activity as specifically required from early gastrula to the onset of late gastrula for normal skeletal patterning. Tricaine inhibits the voltage-gated sodium channel LvScn5a which is strongly expressed in the developing nervous system in pluteus larvae. We found that exogenous expression of an anesthetic-insensitive version of LvScn5a is sufficient to rescue hallmark tricaine-mediated skeletal patterning defects, demonstrating the specificity of the inhibitor. LvScn5a exhibits a ventrolateral ectodermal expression domain in gastrulating embryos that is spatiotemporally congruent with triradiate formation in the ventrolateral PMC clusters at the onset of skeletogenesis. This ectodermal territory normally expresses the patterning cue Wnt5, and we find that the expression of Wnt5 is dramatically spatially expanded by tricaine treatment. We also observe ectopic PMC clusters in tricaine-treated embryos. We found that knockdown of Wnt5 expression is sufficient to rescue tricaine-mediated skeletal patterning defects. These results are consistent with a model in which LvScn5a activity in the ventrolateral ectoderm functions to spatially restrict the expression of the ectodermal patterning cue Wnt5 that in turn induces PMC cluster formation. Together, these findings show that spatially restricted sodium channel activity regulates ectodermal cue expression that, in turn, regulates PMC differentiation and skeletal morphogenesis. Second, we show that V-type H⁺ ATPase (VHA) activity is required for specification of the dorsal-ventral (DV) axis. DV specification is controlled by the TGF-β signal Nodal that specifies the ventral territory and indirectly activates dorsal specification via induction of BMP 2/4 expression. Nodal expression occurs downstream of p38 MAPK, which is transiently, asymmetrically inactive on the presumptive dorsal side of the blastula embryo. VHA activity is required for that transient inactivation of p38 MAPK, and it is required for the subsequent spatial restriction of Nodal expression. We show that VHA inhibition is sufficient to induce global Nodal expression during the blastula stage, resulting in ventralization of the embryo. We show that this phenotype can be rescued by experimentally imposing asymmetric Nodal expression at the 4-cell stage. We discover a VHA-dependent voltage gradient across the DV axis and find that VHA activity is required for hypoxia inducible factor (HIF) activation. We show that neither hyperpolarization nor HIF activation is sufficient to perturb DV specification, which implicates a third unknown pathway connecting VHA activity and p38 MAPK symmetry breaking. These results are consistent with a model in which dorsal VHA activity is required to inhibit Nodal expression and signaling, potentially via dorsal p38 MAPK inhibition. Together, these studies demonstrate that ion channels are required for both DV specification and for normal skeletal patterning.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/48021
Date07 February 2024
CreatorsThomas, Christopher Farzad
ContributorsBradham, Cynthia A.
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0017 seconds