Return to search

Activité biologique et électrochimie de protéines membranes, de bactéries et de bactériophages dans un matériau sol-gel hybride / Biological activity and/or electrochemistry of membrane proteins, bacteria and bacteriophages in a hybrid-based sol-gel material

Le travail décrit dans cette thèse a été mené à l'interface entre trois disciplines: l'électrochimie, la science des matériaux et la microbiologie. L'objectif de cette recherche était tout d'abord d'étudier l'activité de bactéries immobilisées dans un film de silice déposé par le procédé sol-gel à la surface d'électrodes. Les applications potentielles de ce travail fondamental sont les biocapteurs, les bioréacteurs ou biopiles. L'encapsulation bactérienne assistée par électrochimie a été développée en utilisant l'électrolyse du sol de départ pour immobiliser la bactérie Escherichia Coli dans une couche mince sol-gel hybride. La combinaison de précurseurs de silice, de chitosan, de poly(ehtylène glycol) et de tréhalose permet de préserver l'intégrité membranaire et l'activité métabolique. L'électrochimie a ensuite été utilisée comme moyen analytique. Shewanella putrefaciens et Pseudomonas fluorescens ont été encapsulées dans un film à base de silice et les réactions de transfert d'électron de la bactérie à différent médiateurs rédox ont été analysées. Des nanotubes de carbone fonctionnalisés par des espèces ferrocène et la protéine rédox cytochrome c ont été utilisés pour faciliter ce transfert électronique au sein de cette matrice de silice isolante, permettant l'obtention d'un biofilm artificiel. Ces deux types de médiateurs, chimique ou biologique, ont conduit à des sensibilités différentes de la bioélectrode à l'ajout du substrat pourvoyeur d'électron en raison des mécanismes différents impliqués pour transférer ces électrons. L'immobilisation de protéines rédox membranaires a également été considérée dans ces couches minces inorganiques pour favoriser la stabilité de la réponse électrocatalytique. Les protéines considérées impliquent des mécanismes de transfert électronique différents, soit direct pour le cytochrome P450 (CYP1A2), soit médié pour la mandélate déshydrogénase. Finalement, l'influence de l'encapsulation dans une matrice sol-gel hybride sur l'infectivité du bactériophage [phi]X174 a été étudiée, montrant l'effet protecteur de la polyéthylènenimine ou du glycérol / The work reported in this thesis has been developed at the interface between three disciplines, i.e., electrochemistry, material science and microbiology. The purpose of this research was first to study the activity of bacteria immobilized in silica-based films prepared by the sol-gel process on electrode surfaces. Potential applications concern biosensors, bioreactors and biofuel cells. Electrochemically assisted bacterial encapsulation has been developed, using sol electrolysis to immobilize Escherichia coli in a hybrid sol-gel layer. The combination of silica precursors, chitosan, poly(ethylene glycol) and trehalose allowed preservation of cell membrane integrity and metabolic activity. Electrochemistry was then considered as an analytical method. Shewanella putrefaciens and Pseudomonas fluorescens have been encapsulated in silica-based films and the electron transfer reactions from bacteria to different redox mediators have been monitored. Single-walled carbon nanotubes functionalized with ferrocene moieties and bovine heart cytochrome c have been considered as redox shuttles to facilitate the electron transfer in the non-conducting silica matrix, leading to the elaboration of artificial biofilms. Interestingly, these two classes of mediator, i.e. chemical and biological, led to different substrate sensitivity because of their different mechanism of interaction with the bacteria. Immobilization of membrane associated redox proteins in sol-gel films have been then considered and applied for electrocatalysis. Direct and mediated electrochemical communication has been investigated between the electrode surface and cytochrome P450 (CYP1A2) or mandelate dehydrogenase, respectively, showing the interest of sol-gel to stabilize the bioelectrocatalytic reaction. Finally, the influence of encapsulation in a hybrid sol-gel matrix on the infectivity of bacteriophage [phi]X174 has been studied and the protective effect of polyethyleneimine or glycerol was shown

Identiferoai:union.ndltd.org:theses.fr/2013LORR0189
Date03 October 2013
CreatorsGhach, Wissam
ContributorsUniversité de Lorraine, Walcarius, Alain, Etienne, Mathieu
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds