Return to search

THE EFFECT OF BMP4 AND MECHANICAL STIMULATION ON MUSCLE-DERIVED STEM CELLS: IMPLICATIONS FOR BONE AND ARTICULAR CARTILAGE REGENERATION

The prevalence of bone and articular cartilage injuries is expected to increase with the aging population. As a possible therapeutic option, stem cell-based therapies are being investigated. It has previously been reported that muscle-derived stem cells (MDSCs) isolated from mouse skeletal muscle can undergo osteogenic and chondrogenic differentiation in vitro and in vivo when stimulated with bone morphogenetic protein 4 (BMP4). One goal of this project was to determine whether cell sex influences this differentiation potential. Using in vitro osteogenic assays, it was determined that male MDSCs (M-MDSCs) stimulated with BMP4 expressed osteogenic markers and displayed more mineralization than female MDSCs (F-MDSCs). In vivo, M-MDSCs expressing BMP4 and implanted into the hind limb of mice induced a more robust ectopic bone formation when compared to F-MDSCs. These results suggest that cell sex influences the osteogenic differentiation potential of MDSCs. In the second study, the signaling pathways involved during BMP4 stimulation were investigated to further characterize the osteogenic differentiation process. The phosphatidyl inositol 3-kinase and p38 MAPK pathways played a positive role in MDSC osteogenesis, while the extracellular signal-regulated kinase pathway was identified as a negative regulator of osteogenesis. These results suggest that the osteogenic differentiation of MDSCs could be manipulated by regulating these pathways. In the third study, the effect of BMP4 and transforming growth factor-b1 (TGF-b1) on the chondrogenic differentiation of F- and M-MDSCs in vitro was investigated. All MDSCs tested underwent chondrogenic differentiation, with no significant sex-related differences observed. However, addition of TGF-b1 synergistically enhanced BMP4-induced chondrogenic differentiation. In the final study, the effect of mechanical stimulation on the proliferation and osteogenic differentiation of MDSCs was investigated by using both biaxial and uniaxial strain. Mechanical stimulation affected cell orientation, but did not significantly affect the proliferation or osteogenic differentiation of MDSCs. In conclusion, the BMP4-induced osteogenic and chondrogenic differentiation of MDSCs can be influenced by several factors including cell sex and growth factors and can be guided through the manipulation of cell signaling pathways. The results from this project support the continued investigation of MDSCs as a potential cell source for bone and articular cartilage tissue engineering.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-03272007-233537
Date12 June 2007
CreatorsCorsi, Karin A.
ContributorsKacey G. Marra, PhD, Partha Roy, PhD, Johnny Huard, PhD, Bruno Peault, PhD
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-03272007-233537/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0017 seconds