Return to search

MODELING OF TRANSCRANIAL ELECTRICAL STIMULATION BY FINITE ELEMENT ANALYSIS

Transcranial electrical stimulation (TES) appears to be an effective way to monitor the spinal cord while patients are under anesthesia. This method is sensitive to changes in the functioning of the corticospinal tracts. It is a reliable and fast indicator of the status of the spinal cord during surgery. In this research, we develop a model to describe the intracranial voltage, electric field, and activation function distributions associated with transcranial electrical stimulation. Poissons equation is utilized with boundary conditions modeled after a real human head.
The models, which are a two dimensional (2D) circular volume conductor and a three dimensional (3D) spherical volume conductor, include the inhomogeneous aspects of a human head. These inhomogeneous characteristics impact the flow of current due to volume conductivity differences between the scalp, skull, cerebrospinal fluid, and the brain itself. These results for a theoretical head model show the systematic differences between 2D and 3D models which has not been examined for TES. Knowing the differences between 2D and 3D simulations allows the inference for the results of the 3D case using a 2D model, which saves time and computational resources.
A comparison of the voltages, electric fields, and activation functions is examined to determine the differences between the 2D and 3D models for each quantity. Parameterizations are also performed to show the impact of the different layers of the head. The results from the potentials, electric fields, activation function and parameterization calculations are used to infer the systematic differences between 2D and 3D models. This analysis of computational models for TES has not been performed before and is beneficial to diagnosing which areas of the brain are being stimulated during TES and gives an idea of the stimulation threshold needed to achieve muscle responses via TES.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-10232006-164912
Date31 January 2007
CreatorsRath, William Tyler
ContributorsJeffery Balzer, Louis Journee, Robert Sclabassi, Mingui Sun, Donald Crammond
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-10232006-164912/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0015 seconds