Return to search

Synthesis and Characterization of Novel Polyurethane Drug Delivery Systems

Selective delivery of drugs to localized regions of tissue within the body is a complex problem, representing one path through which the efficacy of many pharmaceutical compounds can be enhanced. Many pharmaceutical compounds show excellent activity in vitro, but their uses are severely limited in vivo. Unstable active conformations, limited membrane diffusion, rapid metabolism and/or clearance, decreased solubility, and dose-limiting systemic toxicity are just a few areas in which potential problems exist, halting drug development. Compounds exist possessing ideal pharmacologic activity for treating specific disease states, but they are simply unable to be delivered in adequate quantities or in the proper active conformation to the target site in the body. The following dissertation details the synthesis, characterization, and performance of a series of polyurethane drug delivery systems based on amino acids and the simple carbohydrates. The materials were synthesized from lysine diisocyanate (LDI) and glycerol with the aid of various tertiary amine and organometallic urethane catalysts. Candidate drugs were incorporated into the materials by way of labile urethane and urea linkages; subsequent drug release relied on the passive hydrolysis of the tethering bonds. Drug release from the materials correlated to material morphology, urethane catalyst, and chemical functionality of the incorporated drug. A single-phase polyurethane material was designed, synthesized, and shown capable of simultaneously releasing multiple pharmacologic agents at different rates. Finally, naturally occurring ionic ligands were incorporated into the LDI-glycerol polyurethanes to alter their swelling characteristics and release kinetics. This endeavor has resulted in the formulation of a series of polyurethane materials, capable of long-term controlled release of pharmacologic agents within the body. The structure-function relationships elucidated provide key design criteria, which can ultimately be used to develop such advanced degradable polyurethane materials.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-07162007-170922
Date25 September 2007
CreatorsSivak, Wesley N
ContributorsWilliam R. Wagner, PhD, William C. Zamboni, PharmD, PhD, Xinyan Tracy Cui, PhD, Eric J. Beckman, PhD
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-07162007-170922/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0021 seconds