Caribbean coral reefs have undergone changes in coral cover, structural complexity and assemblage composition since the 1970s. Although some of the ecological consequences associated with these changes have been well documented, the consequences for ecosystem functions dependent on reef structure are less well understood. In particular, there has been little research into the effects of change, on carbonate production and bioerosion; both are critical controls of structural complexity. Currently, there is only a very limited understanding of how both processes vary within and between different habitat types and what this means for ecosystem functioning. Carbonate framework production and bioerosion were investigated within three habitat types (hardgrounds, Acropora palmata reef and Orbicella reef) under sheltered and exposed wave energy regimes on Grand Cayman. Census based assessments were used, allowing the identification of functionally important species. Additionally, habitat specific calcification rates were measured for calcareous encruster communities to improve estimations of carbonate production; mean rates of calcification ranged from 0.19 to 1.14 G (1G = 1 kg CaCO3 m-2 yr-1) within hardgrounds (4–7 m), Acropora palmata reef (1–8 m) and Orbicella reef habitats (8–15 m) and were significantly higher at wave exposed sites. The rates of bioerosion for two sponge species, Siphonodictyon brevitubulatum and Cliona tenuis, were also measured and new approaches to estimating excavating sponge community bioerosion were developed to improves bioerosion estimates. Mean carbonate framework production was 0.38 G within hardgrounds, 2.65 G within Acropora palmata reef habitat and 3.54 G within Orbicella reef habitat but not significantly different between wave exposure regimes. Calcareous encruster communities, dominated by coralline algae, were identified as key carbonate producers within shallow reef habitats on the exposed south coast. They may be important to the maintenance of reef structure in these degraded reef habitats. Orbicella species were the most important carbonate producers within all reef habitats. Mean total bioerosion was 1.32, 2.27 and 2.28 G within hardgrounds, Acropora palmata reef and Orbicella reef habitats respectively. 4 Total bioerosion was not significantly different between wave exposure regimes for any habitat type, but almost completely dominated by parrotfish (29–86 %). On Grand Cayman, both carbonate framework production and bioerosion were less than that measured in comparative habitats, across the Caribbean, despite the presence of a well-managed marine protected area on the sheltered west coast. The highest rates of net carbonate production occurred in the deepest habitat - Orbicella reef (exposed: +1.45 G, sheltered: +1.07 G). Sheltered and exposed Acropora palmata reef habitat had net production rates of +0.53 and +0.30 G respectively. Hardgrounds were net erosional (-0.94 G). Overall the results suggest a change in the focal point for reef accumulation on Grand Cayman that may alter geomorphology over time. Additionally, Acropora palmata reef habitats are likely to be in a state of accretionary stasis, which may have shutdown reef growth in reef crest environments as carbonate framework produced within these habitats is a major contributor to reef accumulation at the reef crest.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:712586 |
Date | January 2016 |
Creators | Murphy, Gary Noel |
Contributors | Perry, Chris ; Simpson, Steve |
Publisher | University of Exeter |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10871/27218 |
Page generated in 0.0012 seconds