Return to search

Využití odpadních surovin k produkci obohacené kvasinkové biomasy / Use of Waste Substrates to Production of Enriched Yeast Biomass

Yeasts are like other organisms constantly exposed to environmental influences. Their survival depends on the skills to adapt to environmental changes, including the ability to use various alternative sources of nutrients. In presented PhD thesis carotenogenic yeast belonging to the genera Rhodotorula, Sporobolomyces and Cystofilobasidium were tested for ability to use of selected waste substrates, and also subjected to several types of exogenous stress effects and mutations in order to increase the production of microbial biomass enriched with specific metabolites. As alternative nutrient sources derived from waste substrates from agricultural and farm production apple peel, pulp, corn germ and more were tested. Yeasts were also exposed to osmotic, oxidative and combined stress (benefits of various concentrations of NaCl and H2O2 to the culture media), followed by metal ions of selenium and chromium in concentrations of 0.01 mM, 0.1 mM and 1 mM. The effect of mutagen methanesulfonic acid ethyl ester was tested too. In all experiments the adaptivity of cells, morphological changes, color pigments produced by the media while some important fungal metabolites production and changes in chromosomal DNA fragmentation were analyzed. In order to evaluate potential changes in the yeast genome after treatment with mutagen and stress factors methods for isolation of intact chromosomal DNA and DNA analysis by pulsed field gel electrophoresis was optimized. The amount of produced metabolites was mainly analyzed by RP-HPLC with UV/VIS and MS detection. The work has been shown that most strains are able to use waste substrates and produced selected target metabolites. Biomass, for example, in R. aurantiaca on apple fiber was about 7 g/l and in C. capitatum cultivated on modified whey reached to 9 g/l. Amount of produced carotenoids by R. aurantiaca cultivated on wheat germ and maize after enzymatic hydrolysis by F. solani was 1.01 mg/g and S. roseus on pasta 4.3 mg/g. The values of ergosterol synthesis in R. aurantiaca are on the apple shells around 4.8 mg/g, in S. roseus on pasta with the enzymatic hydrolysis of P. chrysosporium 8.9 mg/g. The best substrate for biomass production and induction of carotenoids are waste substartes containing a mixture of simple and complex carbohydrates enriched with the addition of nitrogen compounds. Potential cytotoxic effect of stress factors of low concentrations was demonstrated. Red yeast genome was able to distribute by optimized PFGE, the karyotype of tested yeasts contain 11 or more chromosomes with visible differences between yeast species and genera. During exchange internship the ability of recombinant yeast S. cerevisiae to convert xylose to xylitol, which would be achieved by increasing the production of bioethanol as alternative fuel sources was studied. It turned out that both ligninocellulose materials to bioethanol production, as well as various waste substrates for microbial synthesis of carotenoids would reduce costs for industrial production of yeast metabolites, as well as to reduce the negative burden on the environment.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:233333
Date January 2011
CreatorsStarečková, Terezie
ContributorsDemnerová, Kateřina, Vávrová, Milada, doc.PharmDr.Petr Babula, Ph.D., Márová, Ivana
PublisherVysoké učení technické v Brně. Fakulta chemická
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0074 seconds