Return to search

The marine biogeochemistry of zinc isotopes / Marine biogeochemistry of Zn isotopes

Thesis (Ph. D.)--Joint Program in Chemical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2007. / Includes bibliographical references. / Zinc (Zn) stable isotopes can record information about important oceanographic processes. This thesis presents data on Zn isotopes in anthropogenic materials, hydrothermal fluids and minerals, cultured marine phytoplankton, natural plankton, and seawater. By measuring Zn isotopes in a diverse array of marine samples, we hope to understand how Zn isotopes are fractionated in the oceans and how Zn isotopes may be used as tracers of marine biogeochemical processes. Common forms of anthropogenic Zn had [delta]66Zn from +0.08 %o to +0.32 %o, a range similar to Zn ores and terrigenous materials. Larger variations were discovered in hydrothermal fluids and minerals, with hydrothermal fluids ranging in 666Zn from 0.02 %o to +0.93 %o, and chimney minerals ranging from -0.09 %o to +1.17 %o. Lower-temperature vent systems had higher [delta]666Zn values, suggesting that precipitation of isotopically light Zn sulfides drives much of the Zn isotope fractionation in hydrothermal systems. In cultured diatoms, a relationship was discovered between Zn transport by either high-affinity or low-affinity uptake pathways, and the magnitude of Zn isotope fractionation. We established isotope effects of [delta]66Zn = -0.2 %o for high-affinity uptake and [delta]66Zn = -0.8 %o for low-affinity uptake. This work is the first to describe the molecular basis for biological fractionation of transition metals. Biological fractionation of Zn isotopes under natural conditions was investigated by measuring Zn isotopes in plankton collected in the Peru Upwelling Region and around the world. / (cont.) Seawater dissolved Zn isotopes also reflect the chemical and biological cycling of Zn. The [delta]66Zn of deep seawater in the North Pacific and North Atlantic is about 0.5%0, and the dissolved [delta]66Zn gets lighter in the upper water column. This is unexpected based our observations of a biological preference for uptake of light Zn isotopes, and suggests that Zn transport to deep waters may occur by Zn adsorption to sinking particles rather than as primary biological Zn. The thesis, by presenting data on several important aspects of Zn isotope cycling in the oceans, lays the groundwork for further use of Zn isotopes as a marine biogeochemical tracer. / by Seth Greeley John. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/40968
Date January 2007
CreatorsJohn, Seth G
ContributorsEdward A. Boyle., Woods Hole Oceanographic Institution., Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences., Joint Program in Chemical Oceanography, Woods Hole Oceanographic Institution., Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format142 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0016 seconds