Le développement d’une nouvelle génération de catalyseurs dits biohybrides est basé sur l’association d’un complexe métallique et d’une protéine. D’un côté, le complexe métallique est responsable de l’activité catalytique ; de l’autre côté, la protéine protège le complexe métallique vis-à-vis de la dégradation en milieu aqueux et fournit également un environnement chiral propice à une catalyse énantiosélective. Ces catalyseurs fonctionnant de manière sélective en milieu aqueux s’inscrivent tout à fait dans les préceptes de la chimie verte.Une nouvelle famille de protéines artificielles, nommée αRep, a été récemment décrite. Toutes les protéines de la bibliothèque αRep présentent le même repliement en solénoïde incurvé, mais diffèrent à la fois en taille (nombre de motifs répétés) et dans la nature de 5 acides aminés par motif répété. Une surface variable est ainsi générée sur la surface concave du solénoïde. Ces protéines sont extrêmement stables et modifiables. La modularité de ces protéines ouvre la voie à un panel varié d’ingénierie des protéines, notamment la conception de catalyseurs artificiels.Au sein de la bibliothèque αRep, le variant αRep-A3 est une protéine homodimérique pour laquelle les surfaces concaves de chaque monomère génèrent une crevasse. Les résidus formant cette crevasse peuvent être modifiés sans affecter la structure tridimensionnelle de la protéine. Le but de cette thèse a été d’évaluer la capacité de la protéine αRep-A3 à procurer une architecture rigide pour l’incorporation de complexes de métaux de transition. Pour cela, différents ligands de métaux de transition (phénanthroline, terpyridine, porphyrine) ont été couplés covalemment à des variants de αRep-A3 à différentes positions. Des résultats encourageants concernant la réaction de Diels-Alder entre azachalcone et cyclopentadiène suggèrent que ce type d’architecture pourrait fournir une base intéressante pour la création de nouvelles classes de métalloenzymes entièrement artificielles. Des pistes pour l’amélioration des catalyseurs basés sur les αRep par des méthodes d’évolution dirigée sont alors avancées sur la base de ces résultats. / The development of a new generation of so-called biohybrid catalysts is based on the association of a metal complex and a protein. On the one hand, the metal complex is responsible for the catalytic activity; On the other hand, the protein protects the metal complex from degradation in aqueous medium and also provides a chiral environment conducive to enantioselective catalysis. These catalysts, which function selectively in an aqueous medium, fit perfectly into the precepts of green chemistry.A new family of artificial proteins, called αRep, has recently been described. All proteins in the αRep library exhibit the same curved solenoid folding, but differ in size (number of repeating units) and in the nature of 5 amino acids per repeat unit. A variable surface is thus generated on the concave surface of the solenoid. These proteins are extremely stable and modifiable. The modularity of these proteins paves the way for a varied panel of protein engineering, including the design of artificial catalysts.Within the αRep library, the variant αRep-A3 is a homodimeric protein for which the concave surfaces of each monomer generate a crevice. The residues forming this crevice can be modified without affecting the three-dimensional structure of the protein. The aim of this thesis has been to evaluate the ability of the αRep-A3 protein to provide a rigid scaffold for the incorporation of transition metal complexes. To this end, various transition metal ligands (phenanthroline, terpyridine, porphyrin) have been covalently coupled to variants of αRep-A3 at different positions. Encouraging results regarding the Diels-Alder reaction between azachalcone and cyclopentadiene suggest that this type of scaffold could provide an interesting basis for the creation of new classes of fully artificial metalloenzymes. From these results, lines of improvement for αRep-based catalysts by means of directed evolution are then advanced.
Identifer | oai:union.ndltd.org:theses.fr/2017SACLS012 |
Date | 19 January 2017 |
Creators | Di Méo, Thibault |
Contributors | Paris Saclay, Minard, Philippe, Ricoux, Rémy |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0015 seconds