Return to search

High Performance Microbial Fuel Cells and Supercapacitors Using Micro-Electro-Mechanical System (MEMS) Technology

abstract: A Microbial fuel cell (MFC) is a bio-inspired carbon-neutral, renewable electrochemical converter to extract electricity from catabolic reaction of micro-organisms. It is a promising technology capable of directly converting the abundant biomass on the planet into electricity and potentially alleviate the emerging global warming and energy crisis. The current and power density of MFCs are low compared with conventional energy conversion techniques. Since its debut in 2002, many studies have been performed by adopting a variety of new configurations and structures to improve the power density. The reported maximum areal and volumetric power densities range from 19 mW/m2 to 1.57 W/m2 and from 6.3 W/m3 to 392 W/m3, respectively, which are still low compared with conventional energy conversion techniques. In this dissertation, the impact of scaling effect on the performance of MFCs are investigated, and it is found that by scaling down the characteristic length of MFCs, the surface area to volume ratio increases and the current and power density improves. As a result, a miniaturized MFC fabricated by Micro-Electro-Mechanical System(MEMS) technology with gold anode is presented in this dissertation, which demonstrate a high power density of 3300 W/m3. The performance of the MEMS MFC is further improved by adopting anodes with higher surface area to volume ratio, such as carbon nanotube (CNT) and graphene based anodes, and the maximum power density is further improved to a record high power density of 11220 W/m3. A novel supercapacitor by regulating the respiration of the bacteria is also presented, and a high power density of 531.2 A/m2 (1,060,000 A/m3) and 197.5 W/m2 (395,000 W/m3), respectively, are marked, which are one to two orders of magnitude higher than any previously reported microbial electrochemical techniques. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2016

Identiferoai:union.ndltd.org:asu.edu/item:41238
Date January 2016
ContributorsRen, Hao (Author), Chae, Junseok (Advisor), Bakkaloglu, Bertan (Committee member), Phillips, Stephen (Committee member), Goryll, Michael (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format202 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.002 seconds