Return to search

Method for single-cell mass and electrophoretic mobility measurement

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biological Engineering, 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 137-146). / Analysis of single cells using flow cytometry techniques has created a wealth of knowledge about cellular phenomena that could not be obtained by population average measurements. As these techniques are integrated with others to increase the number of parameters that can be measured on single cells and these measurements are made more quantitative, their ability to discriminate between sub-populations of cells increases. Microfabricated sensors offer unique advantages in this area because their internal geometries can be engineered at a size scale comparable to the cell's, making them naturally well-suited for single-cell measurements. The suspended microchannel resonator (SMR) is a versatile flow cytometry platform which is capable measuring the mass of single cells with femtogram resolution. The net frequency shift of a resonant cantilever as the cell transits the fluid-filled microchannel running through it is proportional to the buoyant mass of the cell. The resonance frequency of the SMR is also highly sensitive to a cell's position along the cantilever's length. This thesis presents a new method which makes use of this property to accurately quantify the electrophoretic mobility (EPM) of cells transiting the SMR while subjected to oscillatory electric fields. Recorded resonance frequency time courses can be analyzed to extract both the buoyant mass and EPM of individual cells. This instrument has been used to simultaneously measure the EPM and buoyant masses of discrete polystyrene microspheres and Escherichia coli bacteria. As it has been applied to microspheres of known density, the integrated measurement makes it possible to compute the absolute mass and surface charge of individual microspheres. It has been shown that integrated single-microsphere mass and surface charge measurement enables differentiation of complex aqueous suspensions which is not possible by either measurement alone. / by Philip Dextras. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/61235
Date January 2010
CreatorsDextras, Philip
ContributorsScott R. Manalis and Jongyoon Han., Massachusetts Institute of Technology. Dept. of Biological Engineering., Massachusetts Institute of Technology. Dept. of Biological Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format146 p., application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0029 seconds