Return to search

Quantitative analysis of non-viral gene therapy in primary liver culture systems

Thesis (Ph. D.)--Massachusetts Institute of Technology, Biological Engineering Division, 2007. / Includes bibliographical references (p. 161-172). / Gene therapy has the potential to cure thousands of diseases caused by genetic abnormalities, provide novel combination therapies for cancers and viral infections, and offer a new and effective platform for next generation vaccines. However, after more than three decades of research and development efforts, clinical success has yet to be realized. Successful delivery of DNA is a crucial first step in attaining safe and effective gene therapeutics. While vectors based upon recombinant viruses have shown high delivery and transfection efficiencies, they may also pose certain health risks to patients, can be difficult to target to cell or tissue types of interest, and present difficulties for large-scale manufacturing. Non-viral vectors look to offer a safer alternative and can be engineered to more effectively treat a specific cell type, tissue, or pathology, but these vectors are still plagued with low transfection levels and cannot provide adequate and sustained levels of gene expression. Continued efforts focus on producing next generation non-viral vectors that safely deliver therapeutic transgenes with the efficiency of their viral counterparts. Many barriers exist in the successful trafficking of these non-viral complexes to the nucleus. / (cont.) Current evaluations of non-viral gene delivery treatments in more clinical settings often focus on a single barrier at a time, and as a result, may not lead to an overall improvement in gene delivery. Concurrently, more quantitative or systematic in vitro experiments may not correlate well with in vivo data. Our combined approach of quantitative vector trafficking and expression experiments coupled with computational simulation of vector specific mathematical models that describe every step of the gene delivery process has shown that a systems level approach can glean insight into the most rate-limiting steps for a given vector and generate hypotheses for future vector development and improvement. These studies have been extended to primary liver cultures, coupled with device development to attain a more clinically relevant model system and more spatial resolution to study intracellular vector trafficking and localization. A larger perfused 3-D liver bioreactor has been built that allows for long-term culture of primary hepatocytes that more closely mimic hepatic phenotype than in conventional 2-D cultures and for multiplexed quantitative measurement that is not possible in animal models. / (cont.) A newly constructed density gradient electrophoresis device can separate vesicular organelles and track vector dynamics throughout the cell. These systems have provided more comprehensive data sets which show that vectors behave differently in different culture systems and that different vectors show unique cell trafficking dynamics. These results lend insight for future vector screening methodologies and provide vector specific mathematical models for primary cell transfection that can lead to further optimization of the polymer vectors studied in this work, which can contribute to the development of more efficient next generation in vivo delivery agents. / by Nathan C. Tedford. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/39914
Date January 2007
CreatorsTedford, Nathan C
ContributorsLinda G. Griffith and Douglas A. Lauffenburger., Massachusetts Institute of Technology. Biological Engineering Division., Massachusetts Institute of Technology. Biological Engineering Division.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format255 p., application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0015 seconds